期刊文献+
共找到91篇文章
< 1 2 5 >
每页显示 20 50 100
PHOTOANODIC CHARACTERISTICS OF LAYER-STRUCTURED n-InSe IN POLYSULFIDE SOLUTION
1
作者 Gong Qun SUN Zheng TAN Changchun Institute of Applied Chemistry,Academia Sinica,Changchun 130022. On Leave from Tonghua Normal College 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第2期161-162,共2页
The photoanodic characteristics of layer-structured n-InSe were investigated in polysulfide solution as a solid-liquid junction photoelectro- chemical cell(PEC).A quantum yield approaching about 90% and a photocurrent... The photoanodic characteristics of layer-structured n-InSe were investigated in polysulfide solution as a solid-liquid junction photoelectro- chemical cell(PEC).A quantum yield approaching about 90% and a photocurrent density as high as 30 mA/cm^2 were obtained.But the stabilization experiment demonstrates that about 8% of the photocurrent is attributed to a photoanodic corrosion ceaction. 展开更多
关键词 photoanodic CHARACTERISTICS OF LAYER-STRUCTURED n-InSe IN POLYSULFIDE SOLUTION Figure
下载PDF
Insights on advanced substrates for controllable fabrication of photoanodes toward efficient and stable photoelectrochemical water splitting 被引量:1
2
作者 Huilin Hou Gang Shao +2 位作者 Yang Wang Wai‐Yeung Wong Weiyou Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期164-221,共58页
Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of p... Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed. 展开更多
关键词 hydrogen PHOTOANODE PHOTOELECTROCHEMICAL SUBSTRATES water splitting
下载PDF
Enhancing BiVO_(4)photoanode performance by insertion of an epitaxial BiFeO_(3)ferroelectric layer
3
作者 Haejin Jang Yejoon Kim +6 位作者 Hojoong Choi Jiwoong Yang Yoonsung Jung Sungkyun Choi Donghyeon Lee Ho Won Jang Sanghan Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期71-78,I0003,共9页
BiVO_(4)(BVO)is a promising material as the photoanode for use in photoelectrochemical applications.However,the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfacto... BiVO_(4)(BVO)is a promising material as the photoanode for use in photoelectrochemical applications.However,the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfactory photoelectrochemical performance.To address this,various modifications have been attempted,including the use of ferroelectric materials.Ferroelectric materials can form a permanent polarization within the layer,enhancing the separation and transport of photo-excited electron-hole pairs.In this study,we propose a novel approach by depositing an epitaxial BiFeO_(3)(BFO)thin film underneath the BVO thin film(BVO/BFO)to harness the ferroelectric property of BFO.The self-polarization of the inserted BFO thin film simultaneously functions as a buffer layer to enhance charge transport and a hole-blocking layer to reduce charge recombination.As a result,the BVO/BFO photoanodes showed more than 3.5 times higher photocurrent density(0.65 mA cm^(-2))at 1.23 V_(RHE)under the illumination compared to the bare BVO photoanodes(0.18 m A cm^(-2)),which is consistent with the increase of the applied bias photon-to-current conversion efficiencies(ABPE)and the result of electrochemical impedance spectroscopy(EIS)analysis.These results can be attributed to the self-polarization exhibited by the inserted BFO thin film,which promoted the charge separation and transfer efficiency of the BVO photoanodes. 展开更多
关键词 PHOTOELECTROCHEMICAL PHOTOANODE BiVO_(4) Ferroelectric materials BiFeO_(3)
下载PDF
Efficient flexible dye-sensitized solar cells from rear illumination based on different morphologies of titanium dioxide photoanode
4
作者 Zhe He Gentian Yue +2 位作者 Yueyue Gao Chen Dong Furui Tan 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期67-73,共7页
The TiO_(2) with nanoparticles(NPs),nanowires(NWs),nanorods(NRs)and nanotubes(NTs)structures were prepared by using a in-situ hydrothermal technique,and then proposed as a photoanode for flexible dye-sensitized solar ... The TiO_(2) with nanoparticles(NPs),nanowires(NWs),nanorods(NRs)and nanotubes(NTs)structures were prepared by using a in-situ hydrothermal technique,and then proposed as a photoanode for flexible dye-sensitized solar cell(FDSSC).The influences of the morphology of TiO_(2) on the photovoltaic performances of FDSSCs were investigated.Under rear illumination of 100 mW·cm^(−2),the power conversion efficiencies of FDSSCs achieved 6.96%,7.36%,7.65%,and 7.83%with the TiO_(2) photoanodes of NPs,NWs,NRs,and NTs and PEDOT counter electrode.The FDSSCs based on TiO_(2) NRs and NTs photoanodes have higher short circuit current densities and power conversion efficiencies than that of the others.The enhanced power conversion efficiency is responsible for their nanotubes and rod-shaped ordered structures,which are more beneficial to transmission of electron and hole in semiconductor compared to the TiO_(2) nanoparticles and nanowires disordered structure. 展开更多
关键词 dye-sensitized solar cells PHOTOANODE TiO_(2) MORPHOLOGY
下载PDF
Solar Driven 15.7% Hydrogen Conversion by Harmony of Light Harvesting,Electron Transporting Bridge,and S-Defection in a Self-Assembled Microscale CuS/rGO/CP Photoanode
5
作者 Sujeong Kim Boseok Seo +6 位作者 Hyerim Park Younghwan Im Jeong Yeon Do Byung Sub Kwak Namgyu Son Minkyu Kim Misook Kang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期190-201,共12页
CuS is an encouraging photoelectrode candidate that meets the essential requirements for efficient solar-to-hydrogen production,but it has not been thoroughly studied.A CuS light absorber layer is grown by the self-as... CuS is an encouraging photoelectrode candidate that meets the essential requirements for efficient solar-to-hydrogen production,but it has not been thoroughly studied.A CuS light absorber layer is grown by the self-assembly of copper and sulfur precursors on a carbon paper(CP)electrode.Simultaneously,rGO is introduced as a buffer layer to control the optical and electrical properties of the absorber.The well-ordered microstructural arrangement suppresses the recombination loss of electrons and holes owing to enhanced charge-carrier generation,separation,and transport.The potential reaching 10 mA cm^(-2)in 1.0 M KOH solution is significantly lowered to 0.87 V,and the photocurrent density at 1.23 V is 94.7 mA cm^(-2).The computational result reveals that the potential-determining step is sensitive to O^(*)stability;the lower stability of O^(*)in the thin layer of CuS/rGO decreases the free-energy gap between the initial and final states of the potential-determining step,resulting in a lowering of the onset potential.The faradaic efficiency for the photoelectrochemical oxygen evolution reaction in the optimized 2CuS/1rGO/CP photoanode is 98.60%,and the applied bias photon-to-current and the solar-to-hydrogen efficiencies are 11.2%and 15.7%,respectively,and its ultra-high performance is maintained for 250 h.These record-breaking achievement indices may be a trigger for establishing a green hydrogen economy. 展开更多
关键词 15.7%-solar to hydrogen density functional theory lower photopotential p-CuS/rGO/CP photoanode photoelectrochemical oxygen evolution
下载PDF
Selectively converting CO_(2) to HCOOH on Cu-alloys integrated in hematite-driven artificial photosynthetic cells 被引量:1
6
作者 Jiwu Zhao Liang Huang +6 位作者 Lan Xue Zhenjie Niu Zizhong Zhang Zhengxin Ding Rusheng Yuan Xu Lu Jinlin Long 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期601-610,共10页
The integration of electrochemical CO_(2)reduction(CO_(2)RR) and photoelectrochemical water oxidation offers a sustainable access to valuable chemicals and fuels. Here, we develop a rapidly annealed hematite photoanod... The integration of electrochemical CO_(2)reduction(CO_(2)RR) and photoelectrochemical water oxidation offers a sustainable access to valuable chemicals and fuels. Here, we develop a rapidly annealed hematite photoanode with a photocurrent density of 2.83 mA cm^(-2)at 1.7 VRHEto drive the full-reaction. We also present Cu-alloys electrocatalysis extended from CuInSnS4, which are superior in both activity and selectivity for CO_(2)RR. Specifically, the screened CuInSn achieves a CO_(2)to HCOOH Faradaic efficiency of 93% at a cell voltage of-2.0 V by assembling into artificial photosynthesis cell. The stability test of IT exhibits less than 3% degradation over 24 h. Furthermore, in-situ Raman spectroscopy reveals that both CO_(3)^(-2)and CO_(2)are involved in CO_(2)RR as reactants. The preferential affinity of C for H in the ^(*)HCO_(2)intermediate enables an improved HCOOH-selectivity, highlighting the role of multifunctional Cu in reducing the cell voltage and enhancing the photocurrent density. 展开更多
关键词 CO_(2)reduction Rapid annealing Fe_(2)O_(3)photoanode CuInSnS_(4) In-situ spectroscopy
下载PDF
Efficient quantum dot sensitized solar cells via improved loading amount management
7
作者 Wei Wang Yiling Xie +3 位作者 Fangfang He Yuan Wang Weinan Xue Yan Li 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期213-223,共11页
High light-harvesting efficiency and low interfacial charge transfer loss are essential for the fabrication of high-efficiency quantum dot-based solar cells(QDSCs). Increasing the thickness of mesoporous TiO2films can... High light-harvesting efficiency and low interfacial charge transfer loss are essential for the fabrication of high-efficiency quantum dot-based solar cells(QDSCs). Increasing the thickness of mesoporous TiO2films can improve the loading of pre-synthesized QDs on the film and enhance the absorbance of photoanode, but commonly accompanied by the increase in the unfavorable charge recombination due to prolonged electron transmission paths. Herein, we systematically studied the influence of the balance between QD loading and TiO2film thickness on the performance of QDSCs. It is found that the relative thin photoanode prepared by the cationic surfactant-assisted multiple deposition procedure has achieved a high QD loading which is comparable to that of the thick photoanode commonly used. Under AM 1.5G illumination, Zn–Cu–In–Se and Zn–Cu–In–S based QDSCs with optimized 11.8 μm photoanodes show the PCE of 10.03% and 8.53%, respectively, which are comparable to the corresponding highest PCE of Zn–Cu–In–Se and Zn–Cu–In–S QDSCs(9.74% and 8.75%) with over 25.0 μm photoanodes. Similarly, an impressive PCE of 6.14% was obtained for the CdSe based QDSCs with a 4.1 μm photoanode, which is slightly lower than the best PCE(7.05%)of reference CdSe QDSCs with 18.1 μm photoanode. 展开更多
关键词 Quantum dot sensitized solar cell PHOTOANODE Loading amount Surfactant-assisted deposition
下载PDF
Recent advances in elaborate interface regulation of BiVO_(4)photoanode for photoelectrochemical water splitting
8
作者 Liming Wang Yaping Zhang +1 位作者 Weibing Li Lei Wang 《Materials Reports(Energy)》 EI 2023年第4期3-18,共16页
Bismuth vanadate(BiVO_(4))is an excellent photoanode material for photoelectrochemical(PEC)water splitting system,possessing high theoretical photoelectrocatalytic conversion efficiency.However,the actual PEC activity... Bismuth vanadate(BiVO_(4))is an excellent photoanode material for photoelectrochemical(PEC)water splitting system,possessing high theoretical photoelectrocatalytic conversion efficiency.However,the actual PEC activity and stability of BiVO_(4)are faced with great challenges due to factors such as severe charge recombination and slow water oxidation kinetics at the interface.Therefore,various interface regulation strategies have been adopted to optimize the BiVO_(4)photoanode.This review provides an in-depth analysis for the mechanism of interface regulation strategies from the perspective of factors affecting the PEC performance of BiVO_(4)photoanodes.These interface regulation strategies improve the PEC performance of BiVO_(4)photoanode by promoting charge separation and transfer,accelerating interfacial reaction kinetics,and enhancing stability.The research on the interface regulation strategies of BiVO_(4)photoanode is of great significance for promoting the development of PEC water splitting technology.At the same time,it also has inspiration for providing new ideas and methods for designing and preparing efficient and stable catalytic materials. 展开更多
关键词 Photoelectrochemical water splitting BiVO_(4)photoanode Charge recombination Water oxidation reaction kinetics Interface regulation strategy
下载PDF
Photoelectrocatalytic reduction of CO_2 into formic acid using WO_(3-x)/TiO_2 film as novel photoanode 被引量:2
9
作者 杨亚辉 解人瑞 +3 位作者 黎航 刘灿军 刘文华 占发琦 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2390-2396,共7页
A novel WO3-x/TiO2 film as photoanode was synthesized for photoelectrocatalytic(PEC) reduction of CO2 into formic acid(HCOOH). The films prepared by doctor blade method were characterized with X-ray diffractometer... A novel WO3-x/TiO2 film as photoanode was synthesized for photoelectrocatalytic(PEC) reduction of CO2 into formic acid(HCOOH). The films prepared by doctor blade method were characterized with X-ray diffractometer(XRD), scanning electron microscope(SEM) and transmission electron microscope(TEM). The existence of oxygen vacancies in the WO3-x was confirmed with an X-ray photoelectron spectroscopy(XPS), and the accurate oxygen index was determined by a modified potentiometric titrimetry method. After 3h of photoelectrocatalytic reduction, the formic acid yield of the WO3-x/TiO2 film is 872 nmol/cm^2, which is 1.83 times that of the WO3/TiO2 film. The results of PEC performance demonstrate that the introduction of WO3-x nanoparticles can improve the charge transfer performance so as to enhance the performance of PEC reduction of CO2 into formic acid. 展开更多
关键词 photoelectrocatalytic reduction CO2 formic acid WO3-x TiO2 film photoanode
下载PDF
Design and construction of a film of mesoporous single-crystal rutile TiO_2 rod arrays for photoelectrochemical water oxidation 被引量:2
10
作者 甄超 吴亭亭 +3 位作者 Mohammad W.Kadi Iqbal Ismail 刘岗 成会明 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2171-2177,共7页
A film of mesoporous single-crystal rutile TiO2 rod arrays supported on a transparent conductive glass substrate was synthesized with the assistance of a template layer of closely packed silica nanospheres. This film ... A film of mesoporous single-crystal rutile TiO2 rod arrays supported on a transparent conductive glass substrate was synthesized with the assistance of a template layer of closely packed silica nanospheres. This film was used as a photoanode and showed significant improvement for photoelectrochemical water oxidation compared with a reference film of nonporous single-crystal rutile TiO2rod arrays. 展开更多
关键词 TITANIA PHOTOANODE MESOPORE Single crystal Rod array
下载PDF
A review on photoelectrochemical cathodic protection semiconductor thin films for metals 被引量:15
11
作者 Yuyu Bu Jin-Ping Ao 《Green Energy & Environment》 SCIE 2017年第4期331-362,共32页
Photoelectrochemical(PEC) cathodic protection is considered as an environment friendly method for metals anticorrosion. In this technology, a n-type semiconductor photoanode provides the photogenerated electrons for m... Photoelectrochemical(PEC) cathodic protection is considered as an environment friendly method for metals anticorrosion. In this technology, a n-type semiconductor photoanode provides the photogenerated electrons for metal to achieve cathodic protection. Comparing with traditional PEC photoanode for water splitting, it requires the photoanode providing a suitable cathodic potential for the metal, instead of pursuit ultimate photon to electric conversion efficiency, thus it is a more possible PEC technology for engineering application. To date, great efforts have been devoted to developing novel n-type semiconductors and advanced modification method to improve the performance on PEC cathodic protection metals. Herein, recent progresses in this field are summarized. We highlight the fabrication process of PEC cathodic protection thin film, various nanostructure controlling, doping, compositing methods and their operation mechanism. Finally, the current challenges and future potential works on improving the PEC cathodic protection performance are discussed. 展开更多
关键词 Photoelectrochemical cathodic protection TiO2photoanode SRTIO3 g-C3N4 Photo-electron storage
下载PDF
A review on tungsten-trioxide-based photoanodes for water oxidation 被引量:7
12
作者 Jingwei Huang Pengfei Yue +2 位作者 Lei Wang Houde She Qizhao Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第10期1408-1420,共13页
Photoelectrochemical(PEC)water splitting capable of reducing and oxidizing water into hydrogen and oxygen in a generation mode of spatial separation has gained extensive popularity.In order to effectively produce hydr... Photoelectrochemical(PEC)water splitting capable of reducing and oxidizing water into hydrogen and oxygen in a generation mode of spatial separation has gained extensive popularity.In order to effectively produce hydrogen at the photocathode of a PEC cell,the photoanode,where the oxygen evolution reaction occurs,should be systematically developed on priority.In particular,WO3 has been identified as one of the most promising photoanode materials owing to its narrow band gap and high valence band position.Its practical implementation,however,is still limited by excessive electron–hole recombination and poor water oxidation kinetics.This review presents the various strategies that have been studied for enhancing the PEC water oxidation performance of WO3,such as controlling the morphology,introducing defects,constructing a heterojunction,loading a cocatalyst,and exploiting the plasmonic effect.In addition,the possible future research directions are presented. 展开更多
关键词 WO3 photoanode Water splitting Defect HETEROJUNCTION COCATALYST
下载PDF
Role of transition-metal electrocatalysts for oxygen evolution with Si-based photoanodes 被引量:4
13
作者 Rajender Boddula Guancai Xie +1 位作者 Beidou Guo Jian Ru Gong 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第8期1387-1394,共8页
A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOO... A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOOH,M=Fe,Co,Ni)as a model system,we investigate the effect of the transition-metal electrocatalysts on the oxygen evolution reaction(OER).Among the photoanodes with the three different electrocatalysts,the best OER activity,with a low-onset potential of∼1.01 VRHE,a high photocurrent density of 24.10 mA cm^(-2)at 1.23 VRHE,and a remarkable saturation photocurrent density of 38.82 mA cm^(-2),was obtained with the NiOOH overlayer under AM 1.5G simulated sunlight(100 mW cm^(-2))in 1 M KOH electrolyte.The optimal interfacial engineering for electrocatalysts plays a key role for achieving high performance because it promotes interfacial charge transport,provides a larger number of surface active sites,and results in higher OER activity,compared to other electrocatalysts.This study provides insights into how electrocatalysts function in water-splitting devices to guide future studies of solar energy conversion. 展开更多
关键词 Solar water splitting Artificial photosynthesis Oxygen evolution reaction PHOTOANODE Interfacial engineering Transition-metal electrocatalyst
下载PDF
Decorating non-noble metal plasmonic Al on a TiO2/Cu2O photoanode to boost performance in photoelectrochemical water splitting 被引量:4
14
作者 Shaoce Zhang Zhifeng Liu +2 位作者 Weiguo Yan Zhengang Guo Mengnan Ruan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第12期1884-1893,共10页
Designing low-cost and high-performance photoelectrodes with improved light harvesting and charge separation rates is significant in photoelectrochemical water splitting.Here,a novel TiO2/Cu2O/Al/Al2O3 photoelectrode ... Designing low-cost and high-performance photoelectrodes with improved light harvesting and charge separation rates is significant in photoelectrochemical water splitting.Here,a novel TiO2/Cu2O/Al/Al2O3 photoelectrode is manufactured by depositing plasmonic nanoparticles of the non-noble metal Al on the surface of a TiO2/Cu2O core/shell heterojunction for the first time.The Al nanoparticles,which exhibit a surface plasmon resonance(SPR)effect and are substantially less expensive than noble metals such as Au and Ag,generate hot electron-hole pairs and amplify the electromagnetic field at the interface under illumination.The as-prepared TiO2/Cu2O/Al/Al2O3 photoelectrodes have an extended absorption range and enhanced carrier separation and transfer.Their photocurrent density of 4.52 mA·cm^-2 at 1.23 V vs.RHE represents an 1.84-fold improvement over that of TiO2/Cu2O.Specifically,the ultrathin Al2O3 passivation layer spontaneously generated on the surface of Al in air could act as a protective layer to significantly increase its stability.In this work,the synergistic effect of the heterojunctions and the SPR effect of the non-noble metal Al significantly improve the photoelectrode performance,providing a novel concept for the design of electrodes with good properties and high practicability. 展开更多
关键词 TIO2 PHOTOANODE Non-noble metal Al Surface plasmon resonance Photoelectrochemical water splitting
下载PDF
Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting 被引量:3
15
作者 Mengmeng Ma Yanbin Huang +5 位作者 Jun Liu Kong Liu Zhijie Wang Chao Zhao Shengchun Qu Zhanguo Wang 《Journal of Semiconductors》 EI CAS CSCD 2020年第9期17-29,共13页
Solar water splitting is a promising strategy for the sustainable production of renewable hydrogen and solving the world’s crisis of energy and environment.The third-generation direct bandgap semiconductor of zinc ox... Solar water splitting is a promising strategy for the sustainable production of renewable hydrogen and solving the world’s crisis of energy and environment.The third-generation direct bandgap semiconductor of zinc oxide(ZnO)with properties of environmental friendliness and high efficiency for various photocatalytic reactions,is a suitable material for photoanodes because of its appropriate band structure,fine surface structure,and high electron mobility.However,practical applications of ZnO are usually limited by its high recombination rate of photogenerated electron–hole pairs,lack of surface reaction force,inadequate visible light response,and intrinsic photocorrosion.Given the lack of review on ZnO’s application in photoelectrochemical(PEC)water splitting,this paper reviews ZnO’s research progress in PEC water splitting.It commences with the basic principle of PEC water splitting and the structure and properties of ZnO.Then,we explicitly describe the related strategies to solve the above problems of ZnO as a photoanode,including morphology control,doping modification,construction of heterostructure,and the piezo-photoelectric enhancement of ZnO.This review aims to comprehensively describe recent findings and developments of ZnO in PEC water splitting and to provide a useful reference for the further application and development of ZnO nanomaterials in highly efficient PEC water splitting. 展开更多
关键词 ZNO PHOTOELECTROCHEMICAL water splitting PHOTOANODE
下载PDF
Construction of BiVO4 nanosheets@WO3 arrays heterojunction photoanodes by versatile phase transformation strategy 被引量:3
16
作者 Xin SU Can-jun LIU +3 位作者 Yang LIU Ya-hui YANG Xuan LIU Shu CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期533-544,共12页
A versatile phase transformation strategy was proposed to synthesize novel BiVO4 nanosheets(NSs)@WO3 nanorod(NR)and nanoplate(NP)arrays films.The strategy was carried out by following a three-step hydrothermal process... A versatile phase transformation strategy was proposed to synthesize novel BiVO4 nanosheets(NSs)@WO3 nanorod(NR)and nanoplate(NP)arrays films.The strategy was carried out by following a three-step hydrothermal process(WO3→WO3/Bi2WO6→WO3/BiVO4).According to the characterization results,plenty of BiVO4 NSs grew well on the surface of WO3 NR and NP arrays films,thus forming the WO3/BiVO4 heterojunction structure.The prepared WO3/BiVO4 heterojunction films were used as the photoanodes for the photoelectrochemical(PEC)water splitting.As indicated by the results,the photoanodes exhibited an excellent PEC activity.The photocurrent densities of the WO3/BiVO4 NR and NP photoanodes at 1.23 V(vs RHE)without cocatalyst under visible light illumination reached up to about 1.56 and 1.20 mA/cm2,respectively. 展开更多
关键词 PHOTOANODE bismuth vanadate tungsten oxide HETEROJUNCTION
下载PDF
NiFe layered double-hydroxide nanoparticles for efficiently enhancing performance of BiVO_4 photoanode in photoelectrochemical water splitting 被引量:3
17
作者 Qizhao Wang Tengjiao Niu +2 位作者 Lei Wang Jingwei Huang Houde She 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第4期613-618,共6页
A bismuth vanadate(BiVO4)photoanode with a cocatalyst consisting of NiFe layered double‐hydroxide(NiFe‐LDH)nanoparticles was fabricated for photoelectrochemical(PEC)water splitting.NiFe‐LDH nanoparticles,which can ... A bismuth vanadate(BiVO4)photoanode with a cocatalyst consisting of NiFe layered double‐hydroxide(NiFe‐LDH)nanoparticles was fabricated for photoelectrochemical(PEC)water splitting.NiFe‐LDH nanoparticles,which can improve light‐absorption capacities and facilitate efficient hole transfer to the surface,were deposited on the surface of the BiVO4 photoanode by a hydrothermal method.All the samples were characterized using X‐ray diffraction,scanning electron microscopy,and diffuse‐reflectance spectroscopy.Linear sweep voltammetry and current‐time plots were used to investigate the PEC activity.The photocurrent response of NiFe‐LDH/BiVO4 at 1.23 V vs the reversible hydrogen electrode was higher than those of Ni(OH)2/BiVO4,Fe(OH)2/BiVO4 and pure BiVO4 electrodes under visible‐light illumination.NiFe‐LDH/BiVO4 also gave a superior PEC hydrogen evolution performance.Furthermore,the stability of the NiFe‐LDH/BiVO4 photoanode was excellent compared with that of the bare BiVO4 photoanode,and offers a novel method for solar‐assisted water splitting. 展开更多
关键词 NiFe layered double‐hydroxide nanoparticles BiVO4 photoanode Photoelectrochemical water splitting Photoelectrocatalysis
下载PDF
Preparation of Sb2O3/Sb2S3/FeOOH composite photoanodes for enhanced photoelectrochemical water oxidation 被引量:3
18
作者 Yang PENG Jia CHEN +4 位作者 Liang-xing JIANG Tian-yi WANG Hai-chao YANG Fang-yang LIU Ming JIA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第6期1625-1634,共10页
A novel Sb2O3/Sb2S3/FeOOH photoanode was fabricated via a simple solution impregnation method along with chemical bath deposition and post-sulfidation.The X-ray diffractometry,Raman measurement,and X-ray photoelectron... A novel Sb2O3/Sb2S3/FeOOH photoanode was fabricated via a simple solution impregnation method along with chemical bath deposition and post-sulfidation.The X-ray diffractometry,Raman measurement,and X-ray photoelectron spectroscopy show that the Sb2O3/Sb2S3/FeOOH thin films are successfully prepared.SEM−EDS analyses reveal that the surface of Sb2O3/Sb2S3 thin films becomes rough after the immersion in the FeCl3 solution.The optimized impregnation time is found to be 8 h.The FeOOH co-catalyst loaded Sb2O3/Sb2S3 electrode exhibits an enhanced photocurrent density of 0.45 mA/cm2 at 1.23 V versus RHE under simulated 1 sun,which is approximately 1.41 times compared to the photocurrent density of the unloaded one.Through the further tests of UV−Vis spectroscopy,the electrochemical impedance spectra,and the PEC measurements,the enhancement can result from the increased light-harvesting ability,the decreased interface transmission impedance,and the remarkably enhanced carrier injection efficiency. 展开更多
关键词 Sb2O3/Sb2S3 FeOOH co-catalyst PHOTOANODE carrier injection efficiency
下载PDF
One-step fabrication of TiO2/graphene hybrid mesoporous film with enhanced photocatalytic activity and photovoltaic performance 被引量:2
19
作者 Junxiong Guo Yiyi Li +6 位作者 Shangdong Li Xumei Cui Yu Liu Wen Huang Linna Mao Xiongbang Wei Xiaosheng Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第8期1208-1216,共9页
We synthesized a mesoporous film based on TiO2-reduced graphene oxide(RGO)hybrids using a one-step vapor-thermal method without the need for an additional annealing process.The vapor-thermally prepared TiO2-graphene h... We synthesized a mesoporous film based on TiO2-reduced graphene oxide(RGO)hybrids using a one-step vapor-thermal method without the need for an additional annealing process.The vapor-thermally prepared TiO2-graphene hybrid(VTH)features unique structures with an ultra-large specific surface area of^260 m^2 g^-1 and low aggregation,giving rise to enhanced light harvesting and increased charge generation and separation efficiency.It was observed that a mesoporous film with uniform pore distribution is simultaneously obtained during the VTH growth process.When a 5.0 wt%RGO VTH film was used as the active layer in photocatalysis,the highest photocatalytic activity for degradation of methyl orange was achieved.For another,when a 0.75 wt%RGO VTH film was used as the photoanode in a dye-sensitized solar cell,the power conversion efficiency reached 7.58%,which represents an increase of 73.1%compared to a solar cell using an a photoanode of pure TiO2 synthesized by a traditional solvothermal method.It is expected that this facile method for the synthesis of TiO2/graphene hybrid mesoporous films will be useful in practical applications for preparing other metal oxide/graphene hybrids with ultra-high photocatalytic activity and photovoltaic performance. 展开更多
关键词 TiO2-graphene hybrid Catalytic activity PHOTOANODE Vapor-thermal method Mesoporous film
下载PDF
Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO_(4) photoanode 被引量:2
20
作者 Zhiming Zhou Jinjin Chen +2 位作者 Qinlong Wang Xingxing Jiang Yan Shen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第2期433-441,共9页
Solar-driven water splitting is considered as a promising method to mitigate the energy crisis and various environmental issues.Bismuth vanadate(BiVO_(4))is photoanode material with tremendous potential for photoelect... Solar-driven water splitting is considered as a promising method to mitigate the energy crisis and various environmental issues.Bismuth vanadate(BiVO_(4))is photoanode material with tremendous potential for photoelectrochemical(PEC)water splitting.However,its PEC performance is severely hindered owing to poor surface charge transfer,surface recombination at the photoanode/electrolyte junction,and sluggish oxygen evolution reaction(OER)kinetics.In this regard,a novel solution was developed in this study to address these issues by decorating the surface of BiVO_(4)with cobalt sulfide,whose attractive features such as low cost,high conductivity,and rapid charge-transfer ability assisted in improving the PEC activity of the BiVO_(4)photoanode.The fabricated photoanode exhibited a significantly enhanced photocurrent density of 3.2 m A cm^(-2)under illumination at 1.23 V vs.a reversible hydrogen electrode,which is more than 2.5 times greater than that of pristine BiVO_(4).Moreover,the Co S/BiVO_(4)photoanode also exhibited considerable improvements in the charge injection yield(75.8%vs.36.7%for the bare BiVO_(4)film)and charge separation efficiency(79.8%vs.66.8%for the pristine BiVO_(4)film).These dramatic enhancements were primarily ascribed to rapid charge-transport kinetics and efficient reduction of the anodic overpotential for oxygen evolution enabled by the surface modification of BiVO_(4)by Co S.This study provides valuable suggestions for designing efficient photocatalysts via surface modification to improve the PEC performance. 展开更多
关键词 Photoelectrochemical water splitting Bismuth vanadate Cobalt sulfide Charge separation and transfer PHOTOANODE
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部