High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to ana...High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.展开更多
Within the framework of quantum statistical mechanics,we have proposed an exact analytical solution to the problemof Bose-Einstein condensation(BEC)of harmonically trapped two-dimensional(2D)ideal photons.We utilize t...Within the framework of quantum statistical mechanics,we have proposed an exact analytical solution to the problemof Bose-Einstein condensation(BEC)of harmonically trapped two-dimensional(2D)ideal photons.We utilize this analyticalsolution to investigate the statistical properties of ideal photons in a 2D dye-filled spherical cap cavity.The resultsof numerical calculation of the analytical solution agree completely with the foregoing experimental results in the BEC ofharmonically trapped 2D ideal photons.The analytical expressions of the critical temperature and the condensate fractionare derived in the thermodynamic limit.It is found that the 2D critical photon number is larger than the one-dimensional(1D)critical photon number by two orders of magnitude.The spectral radiance of a 2D spherical cap cavity has a sharppeak at the frequency of the cavity cutoff when the photon number exceeds the critical value determined by a temperature.展开更多
What exactly are photons and dark matter? Modern physical theories do not explain them very well. In this paper, by extending the law of electromagnetic oscillation, the space particles and their operation law can als...What exactly are photons and dark matter? Modern physical theories do not explain them very well. In this paper, by extending the law of electromagnetic oscillation, the space particles and their operation law can also be obtained. The system of space particle theory is formed under the law of physics. The conclusion of the theory of space particles is quite consistent with many physical phenomena. There are no contradictions that can be found. According to the theory of space particles, there is an uneven space at the edge of an object, which has been proved by a series of experimental phenomena. The theory of space particles has revealed the essence of photons and dark matter. It has also revealed the relationship between space, mass, and energy. Space is a physical phenomenon.展开更多
In this article the electron is conceived as an extended particle, consisting of a negatively charged core (-q<sub>0</sub>) which is surrounded by a cloud of electric dipoles (-q, +q). The article presents...In this article the electron is conceived as an extended particle, consisting of a negatively charged core (-q<sub>0</sub>) which is surrounded by a cloud of electric dipoles (-q, +q). The article presents the illustrations that show how and why the electron spins and radiates in an external electric field. In the appendices, Bremsstrahlung & Cerenkov radiations, and the processes of Emission & Absorption of photons will be discussed.展开更多
Hyperentanglement is a promising resource for achieving high capacity quantum communication.Here,we propose a compact scheme for the generation of path-frequency hyperentangled photon pairs via spontaneous parametric ...Hyperentanglement is a promising resource for achieving high capacity quantum communication.Here,we propose a compact scheme for the generation of path-frequency hyperentangled photon pairs via spontaneous parametric down-conversion(SPDC)processes,where six different paths and two different frequencies are covered.A two-dimensional periodicalχ^((2))nonlinear photonic crystal(NPC)is designed to satisfy type-Ⅰquasi-phase-matching conditions in the plane perpendicular to the incident pump beam,and a perfect phase match is achieved along the pump beam's direction to ensure high conversion efficiency,with theoretically estimated photon flux up to 2.068×10^(5) pairs·s^(-1)·mm^(-2).We theoretically calculate the joint-spectral amplitude(JSA)of the generated photon pair and perform Schmidt decomposition on it,where the resulting entropy S of entanglement and effective Schmidt rank K reach 3.2789 and 6.4675,respectively.Our hyperentangled photon source scheme could provide new avenues for high-dimensional quantum communication and high-speed quantum information processing.展开更多
Spectrally uncorrelated biphotons are the essential resources for achieving various quantum information processing protocols.We theoretically investigate the generation of spectrally uncorrelated biphotons emitted by ...Spectrally uncorrelated biphotons are the essential resources for achieving various quantum information processing protocols.We theoretically investigate the generation of spectrally uncorrelated biphotons emitted by spontaneous fourwave mixing from a fiber nonlinear interferometer which consists of an N-stage nonlinear gain fiber and an(N-1)-stage dispersion modulation fiber.The output biphoton states of nonlinear interference are the coherent superposition of various biphoton states born in each nonlinear fiber,and thus the interference fringe will reshape the biphoton joint spectra.As a result,resorting to Taylor expansion to first order for phase mismatching,we theoretically verify that the orientation of phase matching contours will rotate in a specific way with only varying the length of dispersion modulation fiber.The rotation in orientation of phase matching contours may result in spectrally uncorrelated biphotons and even arbitrary correlation biphotons.Further,we choose micro/nanofiber as the nonlinear gain fiber and single-mode communication fiber as dispersion modulation fiber to numerically simulate the generation of spectrally uncorrelated biphotons from spontaneous fourwave mixing.Here,due to significant frequency detuning(hundreds of THz),Raman background noise can be considerably suppressed,even at room temperature,and photons with largely tunable wavelengths can be achieved,indicating a practicability in many quantum fields.A photon mode purity of 97.2%will be theoretically attained without weakening the heralding nature of biphoton sources.We think that this fiber nonlinear interference with the flexibly engineered quantum state can be an excellent practical source for quantum information processing.展开更多
A research group led by Prof.WU Kaifeng from the Dalian Institute of Chemical Physics(DICP)of the Chinese Academy of Sciences(CAS)has reported the efficient near-infrared photon upconversion sensitized by leadfree sem...A research group led by Prof.WU Kaifeng from the Dalian Institute of Chemical Physics(DICP)of the Chinese Academy of Sciences(CAS)has reported the efficient near-infrared photon upconversion sensitized by leadfree semiconductor nanocrystals and demonstrated its novel application in solar synthesis.展开更多
We present a pilot study of time delays Δt in four GRB Radio Afterglow emissions, i.e., delays in the arrival times of radio waves of different frequencies emanating from eight GRB Radio Afterglows. Unlike in most st...We present a pilot study of time delays Δt in four GRB Radio Afterglow emissions, i.e., delays in the arrival times of radio waves of different frequencies emanating from eight GRB Radio Afterglows. Unlike in most studies on this phenomenon, we do not assume that this time delay is due to the Photon being endowed with a non-zero mass, but that this may very well be due to the interstellar space being a cold rarefied cosmic plasma, which medium’s Electrons interact with the electric component of the Photon, thus generating tiny currents that lead to dispersion, hence, a frequency (v) dependent speed of Light where this speed scales off as v<sup>-</sup><sup>1</sup>. The said interaction is such that, lower frequency Photons will propagate at lower speeds than higher frequency Photons thus leading to the observed time delays in the arrivals times of Photons of different frequencies. In reasonable accord with the proposed model, we find that for four of these GRB afterglows, there is a strong unsolicited correlation between the observed time delays and the frequency. If this model can be corroborated by a large enough data set, there is hope that this same model might lead to a better understanding of the observed time delays in GRBs.展开更多
In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state (0) by the server...In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state (0) by the servers on the network, which will reduce the difficulty for the legitimate users to check eavesdropping largely. The users code the information on the single photons with two unitary operations which do not change their measuring bases. Some decoy photons, which are produced by operating the sample photons with a Hadamard, are used for preventing a potentially dishonest server from eavesdropping the quantum lines freely. This scheme is an economical one as it is the easiest way for QSDC network communication securely.展开更多
In this paper, we have analysed in detail the quantum interference of the degenerate narrowband two-photon state by using a Mach-Zehnder interferometer, in which an electromagnetically induced transparency (EIT) med...In this paper, we have analysed in detail the quantum interference of the degenerate narrowband two-photon state by using a Mach-Zehnder interferometer, in which an electromagnetically induced transparency (EIT) medium is placed in one of two interfering beams. Our results clearly show that it is possible to coherently keep the quantum state at a single photon level in the EIT process, especially when the transparent window of the EIT medium is much larger than the bandwidth of the single photon. This shows that the EIT medium is possibly a kind of memory or repeater for the narrowband photons in the areas of quantum communication and quantum computer. This kind of experiment is feasible within the current technology.展开更多
Converting solar energy into hydrogen and hydrocarbon fuels through photocatalytic H2production and CO2photoreduction is a highly promising approach to address growing demand for clean andrenewable energy resources.Ho...Converting solar energy into hydrogen and hydrocarbon fuels through photocatalytic H2production and CO2photoreduction is a highly promising approach to address growing demand for clean andrenewable energy resources.However,solar‐to‐fuel conversion efficiencies of current photocatalysts are not sufficient to meet commercial requirements.The narrow window of solar energy that can be used has been identified as a key reason behind such low photocatalytic reaction efficiencies.The use of photonic crystals,formed from multiple material components,has been demonstrated to be an effective way of improving light harvesting.Within these nanostructures,the slow‐photon effect,a manifestation of light‐propagation control,considerably enhances the interaction between light and the semiconductor components.This article reviews recent developments in the applications of photonic crystals to photocatalytic H2production and CO2reduction based on slow photons.These advances show great promise for improving light harvesting in solar‐energy conversion technologies.展开更多
Cavity optomechanical systems provide powerful platforms to manipulate photons and phonons, open potential ap- plications for modern optical communications and precise measurements. With the refrigeration and ground-s...Cavity optomechanical systems provide powerful platforms to manipulate photons and phonons, open potential ap- plications for modern optical communications and precise measurements. With the refrigeration and ground-state cooling technologies, studies of cavity optomechanics are making significant progress towards the quantum regime including non- classical state preparation, quantum state tomography, quantum information processing, and future quantum internet. With further research, it is found that abundant physical phenomena and important applications in both classical and quan- tum regimes appeal as they have a strong optomechanical nonlinearity, which essentially depends on the single-photon optomechanical coupling strength. Thus, engineering the optomechanical interactions and improving the single-photon optomechanical coupling strength become very important subjects. In this article, we first review several mechanisms, theoretically proposed for enhancing optomechanical coupling. Then, we review the experimental progresses on enhancing optomechanical coupling by optimizing its structure and fabrication process. Finally, we review how to use novel structures and materials to enhance the optomechanical coupling strength. The manipulations of the photons and phonons at the level of strong optomechanical coupling are also summarized.展开更多
As a branch of quantum secure multiparty computation,quantum private comparison is applied frequently in many fields,such as secret elections,private voting,and identification.A quantum private comparison protocol wit...As a branch of quantum secure multiparty computation,quantum private comparison is applied frequently in many fields,such as secret elections,private voting,and identification.A quantum private comparison protocol with higher efficiency and easier implementation is proposed in this paper.The private secrets are encoded as single polarized photons and then encrypted with a homomorphic rotational encryption method.Relying on this method and the circular transmission mode,we implement the multiplexing of photons,raising the efficiency of our protocol to 100%.Our protocol is easy to realize since only single photons,unitary operation,and single-particle measurement are introduced.Meanwhile,the analysis shows that our protocol is also correct and secure.展开更多
Various variants of interaction of photons high energy with free electrons in substance are investigated. It is shown, that among these variants, in substance can be observed: absorption of a photon by electron, coher...Various variants of interaction of photons high energy with free electrons in substance are investigated. It is shown, that among these variants, in substance can be observed: absorption of a photon by electron, coherent and not coherent scattering of photons, a stop electron after interaction with a photon. Dependence of change of length of a wave of a photon after interaction with electron from parameters of substance and speed of movement electron is found.展开更多
In order to explore the nature of photons, no doubts can be allowed to exist concerning the “physics of photons”. While static gravitation plays no role in the physics of photons, this paper will show that the previ...In order to explore the nature of photons, no doubts can be allowed to exist concerning the “physics of photons”. While static gravitation plays no role in the physics of photons, this paper will show that the previously unknown nonbaryonic dynamic gravitation of photons determines not only the external physical behaviour of photons but also, in particular, the hitherto unknown physical events occurring within the photons themselves. For this reason, the paper places particular emphasis on dynamic gravitation as a new hitherto unknown physical quantity. Moreover the new type of gravitation postulated here also provides a plausible explanation of the mysterious nonbaryonic dark matter. As no generally accepted scientific explanation of the creation and essence of dark matter exists to date, it is to be anticipated that the nonbaryonic dynamic gravitation of photons is of general interest to physicists as well as cosmologists and may serve to initiate a general debate among them. Furthermore, this paper will also show that there exists a close mutual relationship between electrodynamics dynamic gravitation static gravitation electrostatics electrodynamics (refer to paragraph 4). Due to the fact that the insights into the relationship between photons and their dynamic gravitation have not been described by any other author to date, there exists only a few references that I can cite in support of my paper.展开更多
We study hard photon production from a two-loop level (bremsstrahlung and annihilation with scattering) in a chemically equilibrating quark-gluon plasma at finite baryon density based on Jüttner distribution of...We study hard photon production from a two-loop level (bremsstrahlung and annihilation with scattering) in a chemically equilibrating quark-gluon plasma at finite baryon density based on Jüttner distribution of partons of the system. We find that the photon yield from the two-loop level increases obviously with the increasing initial quark chemical potential.展开更多
The intensity and number of transmitted multiple scattered photons are calculated for 0.123, 0.320, 0.511,0.662, and 1.115 Me V gamma photons normally incident on slabs of carbon, aluminum, iron, copper, water, muscle...The intensity and number of transmitted multiple scattered photons are calculated for 0.123, 0.320, 0.511,0.662, and 1.115 Me V gamma photons normally incident on slabs of carbon, aluminum, iron, copper, water, muscle,bone, and concrete with thicknesses varying from 1 to 10 mean free paths. The dependence of the transmission probability and energy distribution on the incident energy and material are examined. In general, the obtained results show good agreement with the other values calculated by the Monte Carlo method.展开更多
The number of return photons from sodium laser beacon(SLB) greatly suffers down-pumping, recoil, and geomagnetic field when the long pulse laser with circular polarization interacts with sodium atoms in the mesosphe...The number of return photons from sodium laser beacon(SLB) greatly suffers down-pumping, recoil, and geomagnetic field when the long pulse laser with circular polarization interacts with sodium atoms in the mesosphere. Considering recoil and down-pumping effects on the number of return photons from SLB, the spontaneous radiation rates are obtained by numerical computations and fittings. Furthermore, combining with the geomagnetic field effects, a new expression is achieved for calculating the number of return photons. By using this expression and considering the stochastic distribution of laser intensity in the mesosphere under different turbulence models for atmosphere, the number of return photons excited by the narrow-band single mode laser and that by the narrow-band three-mode laser are respectively calculated. The results show that the narrow-band three-mode laser with a specific spectrum structure has a higher spontaneous radiation rate and more return photons than a narrow-band single mode laser. Of note, the effect of the atmospheric turbulence on the number of return photons is remarkable. Calculation results indicate that the number of return photons under the HV5/7 model for atmospheric turbulence is much higher than that under the Greenwood and Mod HV models.展开更多
Bacterial resistance is today a matter of great medical concern,so it is urgent to investigate alternatives to alleviate it.Photodynamic inactivation(PDI)is a method that has been endorsed to inactivate diferent patho...Bacterial resistance is today a matter of great medical concern,so it is urgent to investigate alternatives to alleviate it.Photodynamic inactivation(PDI)is a method that has been endorsed to inactivate diferent pathogens,including bacteria,fungi and viruses.PDI is achieved by using a photosensitizer(PS)molecule which generates reactive oxygen species under visible or UV ra-diation.We use visible light and UV-A radiation to excite four commercial PSs(methylene blue,rose bengal,riboflavin and curcumin),and nanopartides synthesized in our laboratory.Despite these PSs having been thoroughly studied in the past by other research groups,in order to compare their effects in an appropriate way,we matched the number of photons they absorb.We found that methylene blue leads to the major inactivation of Escherichia coli.Furthermore,we evaluated the production of singlet axygen and hydroxyl radicals in the photoinactivation process.展开更多
This paper proposes a scheme for secure authentication of classical messages with single photons and a hashed function. The security analysis of this scheme is also given, which shows that anyone cannot forge valid me...This paper proposes a scheme for secure authentication of classical messages with single photons and a hashed function. The security analysis of this scheme is also given, which shows that anyone cannot forge valid message authentication codes (MACs). In addition, the lengths of the authentication key and the MACs are invariable and shorter, in comparison with those presented authentication schemes. Moreover, quantum data storage and entanglement are not required in this scheme. Therefore, this scheme is more efficient and economical.展开更多
基金The authors gratefully acknowledge the science teams of NASA High Mountain Asia 8-meter DEM and NASA ICESat-2 for providing access to the data.This work was conducted with the infrastructure provided by the National Remote Sensing Centre(NRSC),for which the authors were indebted to the Director,NRSC,Hyderabad.We acknowledge the continued support and scientific insights from Mr.Rakesh Fararoda,Mr.Sagar S Salunkhe,Mr.Hansraj Meena,Mr.Ashish K.Jain and other staff members of Regional Remote Sensing Centre-West,NRSC/ISRO,Jodhpur.The authors want to acknowledge Dr.Kamal Pandey,Scientist,IIRS,Dehradun,for sharing field-level information about the Auli-Joshimath.This research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.
文摘High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.
基金supported by the National Natural Science Foundation of China(Grant Nos.10174024 and 10474025).
文摘Within the framework of quantum statistical mechanics,we have proposed an exact analytical solution to the problemof Bose-Einstein condensation(BEC)of harmonically trapped two-dimensional(2D)ideal photons.We utilize this analyticalsolution to investigate the statistical properties of ideal photons in a 2D dye-filled spherical cap cavity.The resultsof numerical calculation of the analytical solution agree completely with the foregoing experimental results in the BEC ofharmonically trapped 2D ideal photons.The analytical expressions of the critical temperature and the condensate fractionare derived in the thermodynamic limit.It is found that the 2D critical photon number is larger than the one-dimensional(1D)critical photon number by two orders of magnitude.The spectral radiance of a 2D spherical cap cavity has a sharppeak at the frequency of the cavity cutoff when the photon number exceeds the critical value determined by a temperature.
文摘What exactly are photons and dark matter? Modern physical theories do not explain them very well. In this paper, by extending the law of electromagnetic oscillation, the space particles and their operation law can also be obtained. The system of space particle theory is formed under the law of physics. The conclusion of the theory of space particles is quite consistent with many physical phenomena. There are no contradictions that can be found. According to the theory of space particles, there is an uneven space at the edge of an object, which has been proved by a series of experimental phenomena. The theory of space particles has revealed the essence of photons and dark matter. It has also revealed the relationship between space, mass, and energy. Space is a physical phenomenon.
文摘In this article the electron is conceived as an extended particle, consisting of a negatively charged core (-q<sub>0</sub>) which is surrounded by a cloud of electric dipoles (-q, +q). The article presents the illustrations that show how and why the electron spins and radiates in an external electric field. In the appendices, Bremsstrahlung & Cerenkov radiations, and the processes of Emission & Absorption of photons will be discussed.
基金Project supported by the Key-Area Research and Development Program of Guangdong Province of China (Grant No.2018B030325002)the National Natural Science Foundation of China (Grant No.62075129)+2 种基金the Open Project Program of SJTU-Pinghu Institute of Intelligent Optoelectronics (Grant No.2022SPIOE204)the Science and Technology on Metrology and Calibration Laboratory (Grant No.JLJK2022001B002)the Sichuan Provincial Key Laboratory of Microwave Photonics (Grant No.2023-04)。
文摘Hyperentanglement is a promising resource for achieving high capacity quantum communication.Here,we propose a compact scheme for the generation of path-frequency hyperentangled photon pairs via spontaneous parametric down-conversion(SPDC)processes,where six different paths and two different frequencies are covered.A two-dimensional periodicalχ^((2))nonlinear photonic crystal(NPC)is designed to satisfy type-Ⅰquasi-phase-matching conditions in the plane perpendicular to the incident pump beam,and a perfect phase match is achieved along the pump beam's direction to ensure high conversion efficiency,with theoretically estimated photon flux up to 2.068×10^(5) pairs·s^(-1)·mm^(-2).We theoretically calculate the joint-spectral amplitude(JSA)of the generated photon pair and perform Schmidt decomposition on it,where the resulting entropy S of entanglement and effective Schmidt rank K reach 3.2789 and 6.4675,respectively.Our hyperentangled photon source scheme could provide new avenues for high-dimensional quantum communication and high-speed quantum information processing.
基金Project supported by the Science and Technology Key Project of Henan Province,China(Grant No.182102210577)the National Natural Science Foundation of China(Grant No.61605249)。
文摘Spectrally uncorrelated biphotons are the essential resources for achieving various quantum information processing protocols.We theoretically investigate the generation of spectrally uncorrelated biphotons emitted by spontaneous fourwave mixing from a fiber nonlinear interferometer which consists of an N-stage nonlinear gain fiber and an(N-1)-stage dispersion modulation fiber.The output biphoton states of nonlinear interference are the coherent superposition of various biphoton states born in each nonlinear fiber,and thus the interference fringe will reshape the biphoton joint spectra.As a result,resorting to Taylor expansion to first order for phase mismatching,we theoretically verify that the orientation of phase matching contours will rotate in a specific way with only varying the length of dispersion modulation fiber.The rotation in orientation of phase matching contours may result in spectrally uncorrelated biphotons and even arbitrary correlation biphotons.Further,we choose micro/nanofiber as the nonlinear gain fiber and single-mode communication fiber as dispersion modulation fiber to numerically simulate the generation of spectrally uncorrelated biphotons from spontaneous fourwave mixing.Here,due to significant frequency detuning(hundreds of THz),Raman background noise can be considerably suppressed,even at room temperature,and photons with largely tunable wavelengths can be achieved,indicating a practicability in many quantum fields.A photon mode purity of 97.2%will be theoretically attained without weakening the heralding nature of biphoton sources.We think that this fiber nonlinear interference with the flexibly engineered quantum state can be an excellent practical source for quantum information processing.
文摘A research group led by Prof.WU Kaifeng from the Dalian Institute of Chemical Physics(DICP)of the Chinese Academy of Sciences(CAS)has reported the efficient near-infrared photon upconversion sensitized by leadfree semiconductor nanocrystals and demonstrated its novel application in solar synthesis.
文摘We present a pilot study of time delays Δt in four GRB Radio Afterglow emissions, i.e., delays in the arrival times of radio waves of different frequencies emanating from eight GRB Radio Afterglows. Unlike in most studies on this phenomenon, we do not assume that this time delay is due to the Photon being endowed with a non-zero mass, but that this may very well be due to the interstellar space being a cold rarefied cosmic plasma, which medium’s Electrons interact with the electric component of the Photon, thus generating tiny currents that lead to dispersion, hence, a frequency (v) dependent speed of Light where this speed scales off as v<sup>-</sup><sup>1</sup>. The said interaction is such that, lower frequency Photons will propagate at lower speeds than higher frequency Photons thus leading to the observed time delays in the arrivals times of Photons of different frequencies. In reasonable accord with the proposed model, we find that for four of these GRB afterglows, there is a strong unsolicited correlation between the observed time delays and the frequency. If this model can be corroborated by a large enough data set, there is hope that this same model might lead to a better understanding of the observed time delays in GRBs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state (0) by the servers on the network, which will reduce the difficulty for the legitimate users to check eavesdropping largely. The users code the information on the single photons with two unitary operations which do not change their measuring bases. Some decoy photons, which are produced by operating the sample photons with a Hadamard, are used for preventing a potentially dishonest server from eavesdropping the quantum lines freely. This scheme is an economical one as it is the easiest way for QSDC network communication securely.
基金supported by the National Natural Science Foundation of China (Grant No 10674126)the State Key Program for Basic Research of China (Grant No 2001CB309300)
文摘In this paper, we have analysed in detail the quantum interference of the degenerate narrowband two-photon state by using a Mach-Zehnder interferometer, in which an electromagnetically induced transparency (EIT) medium is placed in one of two interfering beams. Our results clearly show that it is possible to coherently keep the quantum state at a single photon level in the EIT process, especially when the transparent window of the EIT medium is much larger than the bandwidth of the single photon. This shows that the EIT medium is possibly a kind of memory or repeater for the narrowband photons in the areas of quantum communication and quantum computer. This kind of experiment is feasible within the current technology.
文摘Converting solar energy into hydrogen and hydrocarbon fuels through photocatalytic H2production and CO2photoreduction is a highly promising approach to address growing demand for clean andrenewable energy resources.However,solar‐to‐fuel conversion efficiencies of current photocatalysts are not sufficient to meet commercial requirements.The narrow window of solar energy that can be used has been identified as a key reason behind such low photocatalytic reaction efficiencies.The use of photonic crystals,formed from multiple material components,has been demonstrated to be an effective way of improving light harvesting.Within these nanostructures,the slow‐photon effect,a manifestation of light‐propagation control,considerably enhances the interaction between light and the semiconductor components.This article reviews recent developments in the applications of photonic crystals to photocatalytic H2production and CO2reduction based on slow photons.These advances show great promise for improving light harvesting in solar‐energy conversion technologies.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB921401)the Tsinghua University Initiative Scientific Research Programthe Tsinghua National Laboratory for Information Science and Technology(TNList)Cross-discipline Foundation
文摘Cavity optomechanical systems provide powerful platforms to manipulate photons and phonons, open potential ap- plications for modern optical communications and precise measurements. With the refrigeration and ground-state cooling technologies, studies of cavity optomechanics are making significant progress towards the quantum regime including non- classical state preparation, quantum state tomography, quantum information processing, and future quantum internet. With further research, it is found that abundant physical phenomena and important applications in both classical and quan- tum regimes appeal as they have a strong optomechanical nonlinearity, which essentially depends on the single-photon optomechanical coupling strength. Thus, engineering the optomechanical interactions and improving the single-photon optomechanical coupling strength become very important subjects. In this article, we first review several mechanisms, theoretically proposed for enhancing optomechanical coupling. Then, we review the experimental progresses on enhancing optomechanical coupling by optimizing its structure and fabrication process. Finally, we review how to use novel structures and materials to enhance the optomechanical coupling strength. The manipulations of the photons and phonons at the level of strong optomechanical coupling are also summarized.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFB1805405)the 111 Project(Grant No.B21049)+1 种基金the Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant No.2019BDKFJJ014)the Fundamental Research Funds for the Central Universities(Grant No.2020RC38)。
文摘As a branch of quantum secure multiparty computation,quantum private comparison is applied frequently in many fields,such as secret elections,private voting,and identification.A quantum private comparison protocol with higher efficiency and easier implementation is proposed in this paper.The private secrets are encoded as single polarized photons and then encrypted with a homomorphic rotational encryption method.Relying on this method and the circular transmission mode,we implement the multiplexing of photons,raising the efficiency of our protocol to 100%.Our protocol is easy to realize since only single photons,unitary operation,and single-particle measurement are introduced.Meanwhile,the analysis shows that our protocol is also correct and secure.
文摘Various variants of interaction of photons high energy with free electrons in substance are investigated. It is shown, that among these variants, in substance can be observed: absorption of a photon by electron, coherent and not coherent scattering of photons, a stop electron after interaction with a photon. Dependence of change of length of a wave of a photon after interaction with electron from parameters of substance and speed of movement electron is found.
文摘In order to explore the nature of photons, no doubts can be allowed to exist concerning the “physics of photons”. While static gravitation plays no role in the physics of photons, this paper will show that the previously unknown nonbaryonic dynamic gravitation of photons determines not only the external physical behaviour of photons but also, in particular, the hitherto unknown physical events occurring within the photons themselves. For this reason, the paper places particular emphasis on dynamic gravitation as a new hitherto unknown physical quantity. Moreover the new type of gravitation postulated here also provides a plausible explanation of the mysterious nonbaryonic dark matter. As no generally accepted scientific explanation of the creation and essence of dark matter exists to date, it is to be anticipated that the nonbaryonic dynamic gravitation of photons is of general interest to physicists as well as cosmologists and may serve to initiate a general debate among them. Furthermore, this paper will also show that there exists a close mutual relationship between electrodynamics dynamic gravitation static gravitation electrostatics electrodynamics (refer to paragraph 4). Due to the fact that the insights into the relationship between photons and their dynamic gravitation have not been described by any other author to date, there exists only a few references that I can cite in support of my paper.
基金Supported in part by the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KJCX2-N11, the National Natural Science Foundation of China under Grant Nos 10405031, 10275002, 10328509 and 10135030, the Major State Basic Research and Development Programme of China under Grant No G200077400.
文摘We study hard photon production from a two-loop level (bremsstrahlung and annihilation with scattering) in a chemically equilibrating quark-gluon plasma at finite baryon density based on Jüttner distribution of partons of the system. We find that the photon yield from the two-loop level increases obviously with the increasing initial quark chemical potential.
文摘The intensity and number of transmitted multiple scattered photons are calculated for 0.123, 0.320, 0.511,0.662, and 1.115 Me V gamma photons normally incident on slabs of carbon, aluminum, iron, copper, water, muscle,bone, and concrete with thicknesses varying from 1 to 10 mean free paths. The dependence of the transmission probability and energy distribution on the incident energy and material are examined. In general, the obtained results show good agreement with the other values calculated by the Monte Carlo method.
基金Project supported by the National Natural Science Foundation of China(Grant No.61107066)the College Natural Science Foundation of Anhui Province,China(Grant No.KJ2013B331)
文摘The number of return photons from sodium laser beacon(SLB) greatly suffers down-pumping, recoil, and geomagnetic field when the long pulse laser with circular polarization interacts with sodium atoms in the mesosphere. Considering recoil and down-pumping effects on the number of return photons from SLB, the spontaneous radiation rates are obtained by numerical computations and fittings. Furthermore, combining with the geomagnetic field effects, a new expression is achieved for calculating the number of return photons. By using this expression and considering the stochastic distribution of laser intensity in the mesosphere under different turbulence models for atmosphere, the number of return photons excited by the narrow-band single mode laser and that by the narrow-band three-mode laser are respectively calculated. The results show that the narrow-band three-mode laser with a specific spectrum structure has a higher spontaneous radiation rate and more return photons than a narrow-band single mode laser. Of note, the effect of the atmospheric turbulence on the number of return photons is remarkable. Calculation results indicate that the number of return photons under the HV5/7 model for atmospheric turbulence is much higher than that under the Greenwood and Mod HV models.
基金supported by CONACyT,Mexico under Grant A1-S-8125 and Fideicomiso SEPCINVESTAV(FIDSC2018/72).
文摘Bacterial resistance is today a matter of great medical concern,so it is urgent to investigate alternatives to alleviate it.Photodynamic inactivation(PDI)is a method that has been endorsed to inactivate diferent pathogens,including bacteria,fungi and viruses.PDI is achieved by using a photosensitizer(PS)molecule which generates reactive oxygen species under visible or UV ra-diation.We use visible light and UV-A radiation to excite four commercial PSs(methylene blue,rose bengal,riboflavin and curcumin),and nanopartides synthesized in our laboratory.Despite these PSs having been thoroughly studied in the past by other research groups,in order to compare their effects in an appropriate way,we matched the number of photons they absorb.We found that methylene blue leads to the major inactivation of Escherichia coli.Furthermore,we evaluated the production of singlet axygen and hydroxyl radicals in the photoinactivation process.
基金supported by the National Natural Science Foundation of China (Grant Nos 60873191 and 60821001)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 200800131016)+5 种基金Beijing Nova Program (Grant No2008B51)Key Project of the Chinese Ministry of Education (Grant No 109014)the Natural Science Foundation of Beijing (Grant No 4072020)the National Laboratory for Modern Communications Science Foundation of China (Grant No 9140C1101010601)the Natural Science Foundation of Education Bureau of Henan Province (Grant No 2008B120005)the Youth Foundation of Luoyang Normal University
文摘This paper proposes a scheme for secure authentication of classical messages with single photons and a hashed function. The security analysis of this scheme is also given, which shows that anyone cannot forge valid message authentication codes (MACs). In addition, the lengths of the authentication key and the MACs are invariable and shorter, in comparison with those presented authentication schemes. Moreover, quantum data storage and entanglement are not required in this scheme. Therefore, this scheme is more efficient and economical.