期刊文献+
共找到1,211篇文章
< 1 2 61 >
每页显示 20 50 100
Seed Storability in Rice: Physiological Foundations, Molecular Mechanisms, and Applications in Breeding
1
作者 ZHOU Tianshun YU Dong +3 位作者 WU Liubing XU Yusheng DUAN Meijuan YUAN Dingyang 《Rice science》 SCIE CSCD 2024年第4期401-416,I0023-I0024,共18页
Long-term storage of crop seeds is critical for the conservation of germplasm resources, ensuring food supply, and supporting sustainable production. Rice, as a major food staple, has a substantial stock for consumpti... Long-term storage of crop seeds is critical for the conservation of germplasm resources, ensuring food supply, and supporting sustainable production. Rice, as a major food staple, has a substantial stock for consumption and production worldwide. However, its food value and seed viability tend to decline during storage. Understanding the physiological responses and molecular mechanisms of aging tolerance forms the basis for enhancing seed storability in rice. This review outlines the latest progress in influential factors, evaluation methods, and identification indices of seed storability. It also discusses the physiological consequences, molecular mechanisms, and strategies for breeding aging-tolerant rice in detail. Finally, it highlights challenges in seed storability research that require future attention. This review offers a theoretical foundation and research direction for uncovering the mechanisms behind seed storability and breeding aging-tolerant rice. 展开更多
关键词 RICE seed storability physiological response molecular mechanism aging-tolerant breeding
下载PDF
Advances in Wireless,Batteryless,Implantable Electronics for Real‑Time,Continuous Physiological Monitoring
2
作者 Hyeonseok Kim Bruno Rigo +2 位作者 Gabriella Wong Yoon Jae Lee Woon‑Hong Yeo 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期254-302,共49页
This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design co... This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses. 展开更多
关键词 Implantable electronics Biomedical systems Batteryless devices Wireless electronics physiological signal monitoring
下载PDF
Exogenous calcium enhances the physiological status and photosynthetic capacity of rose under drought stress
3
作者 Xiaojuan Zhao Shang Lin +5 位作者 Shuang Yu Yichang Zhang Lin Su Lifang Geng Chenxia Cheng Xinqiang Jiang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期853-865,共13页
Drought(water shortage)can substantially limit the yield and economic value of rose plants(Rosa spp.).Here,we characterized the effect of exogenous calcium(Ca^(2+))on the antioxidant system and photosynthesis-related ... Drought(water shortage)can substantially limit the yield and economic value of rose plants(Rosa spp.).Here,we characterized the effect of exogenous calcium(Ca^(2+))on the antioxidant system and photosynthesis-related properties of rose under polyethylene glycol 6000(PEG6000)-induced drought stress.Chlorophyll levels,as well as leaf and root biomass,were significantly reduced by drought;drought also had a major effect on the enzymatic antioxidant system and increased concentrations of reactive oxygen species.Application of exogenous Ca^(2+)increased the net photosynthetic rate and stomatal conductance of leaves,enhanced water-use efficiency,and increased the length and width of stomata following exposure to drought.Organ-specific physiological responses were observed under different concentrations of Ca^(2+).Application of 5 mmol·L^(-1)Ca^(2+)promoted photosynthesis and antioxidant activity in the leaves,and application of 10 mmol·L^(-1)Ca^(2+)promoted antioxidant activity in the roots.Application of exogenous Ca^(2+)greatly enhanced the phenotype and photosynthetic capacity of potted rose plants following exposure to drought stress.Overall,our findings indicate that the application of exogenous Ca^(2+)enhances the drought resistance of roses by promoting physiological adaptation and that it could be used to aid the cultivation of rose plants. 展开更多
关键词 Rosa hybrida L. Exogenous calcium Drought stress physiological index Photosynthetic capacity
下载PDF
Implantable Electrochemical Microsensors for In Vivo Monitoring of Animal Physiological Information
4
作者 Jin Zhou Shenghan Zhou +4 位作者 Peidi Fan Xunjia Li Yibin Ying Jianfeng Ping Yuxiang Pan 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期183-211,共29页
In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,... In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,implantable electrochemical microsensors have emerged as a prominent area of research.These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration.They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner,characterized by their bloodless,painless features,and exceptional performance.The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts.This review commenced with a comprehensive discussion of the construction of microsensors,including the materials utilized and the methods employed for fabrication.Following this,we proceeded to explore the various implantation technologies employed for electrochemical microsensors.In addition,a comprehensive overview was provided of the various applications of implantable electrochemical microsensors,specifically in the monitoring of diseases and the investigation of disease mechanisms.Lastly,a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors. 展开更多
关键词 Electrochemical microsensors Implantable sensors In vivo monitoring Animal physiological information
下载PDF
Artificial intelligence in physiological characteristics recognition for internet of things authentication
5
作者 Zhimin Zhang Huansheng Ning +2 位作者 Fadi Farha Jianguo Ding Kim-Kwang Raymond Choo 《Digital Communications and Networks》 SCIE CSCD 2024年第3期740-755,共16页
Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)systems.However,conventional mode-based authentication methods(e.g.,passwords and sm... Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)systems.However,conventional mode-based authentication methods(e.g.,passwords and smart cards)may be vulnerable to a broad range of attacks(e.g.,eavesdropping and side-channel attacks).Hence,there have been attempts to design biometric-based authentication solutions,which rely on physiological and behavioral characteristics.Behavioral characteristics need continuous monitoring and specific environmental settings,which can be challenging to implement in practice.However,we can also leverage Artificial Intelligence(AI)in the extraction and classification of physiological characteristics from IoT devices processing to facilitate authentication.Thus,we review the literature on the use of AI in physiological characteristics recognition pub-lished after 2015.We use the three-layer architecture of the IoT(i.e.,sensing layer,feature layer,and algorithm layer)to guide the discussion of existing approaches and their limitations.We also identify a number of future research opportunities,which will hopefully guide the design of next generation solutions. 展开更多
关键词 physiological characteristics recognition Artificial intelligence Internet of things Biological-driven authentication
下载PDF
Semi-implantable device based on multiplexed microfilament electrode cluster for continuous monitoring of physiological ions
6
作者 Shuang Huang Shantao Zheng +9 位作者 Mengyi He Chuanjie Yao Xinshuo Huang Zhengjie Liu Qiangqiang Ouyang Jing Liu Feifei Wu Hang Gao Xi Xie Hui-jiuan Chen 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期88-103,共16页
Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in bio... Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health. 展开更多
关键词 Multiplexed microfilament electrode cluster physiological ion sensing Subcutaneous and brain experiment Wearable platform for multi-ion detection Continuous real-time monitoring system
下载PDF
Physiological Mechanism of Exogenous Selenium in Alleviating Mercury Stress on Pakchoi(Brassica campestris L.)
7
作者 Chengxu Qian Qiangwen Chen +4 位作者 Leiyu Jiang Xiaoyan Yang Shen Rao Weiwei Zhang Feng Xu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第5期951-962,共12页
The objective of this study was to explain the physiological mechanisms through which Na_(2)SeO_(3) mitigates the growth and developmental inhibition of pakchoi under HgCl_(2)stress.The results showed that treatment w... The objective of this study was to explain the physiological mechanisms through which Na_(2)SeO_(3) mitigates the growth and developmental inhibition of pakchoi under HgCl_(2)stress.The results showed that treatment with HgCl_(2)(40 mg L^(−1))led to reduced biomass,dwarfing,root shortening,and root tip necrosis in pakchoi.Compared to control(CK),the activities of superoxide dismutase(SOD)and peroxidase(POD)in Hg treatment increased,and the content of malondialdehyde(MDA)also dramatically increased,which negatively impacted the growth of pakchoi.Low concentrations of Na_(2)SeO_(3)(0.2 mg L^(−1))significantly increased the content of soluble sugars compared with control,while chlorophyll,soluble proteins,free amino acids,and vitamin C had no significant changes.The results of the mixed treatments with HgCl_(2)and Na_(2)SeO_(3) suggested that selenium may be able to reduce the toxicity of mercury in pakchoi.The biomass,plant height,root length,chlorophyll content,soluble protein,other physiological indicators,and proline showed significant increases compared with the HgCl_(2)treatment.Additionally,the MDA content and mercury accumulation in pakchoi decreased.Our results revealed the antagonistic effects of selenium and mercury in pakchoi.Thus,a theoretical basis for studying pakchoi’s mercuryexcreted and selenium-rich cultivation technology was provided. 展开更多
关键词 SELENIUM mercury stress PAKCHOI physiological properties antioxidant enzymes
下载PDF
Physiological Response Mechanism and Drought Resistance Evaluation of Passiflora edulis Sims under Drought Stress
8
作者 Binyang Zhao Fengchan Wu +3 位作者 Guojun Cai Peiyu Xi Yulin Guo Anding Li 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第6期1345-1363,共19页
In order to explore the response mechanism of Passiflora edulis Sims to drought stress,the changes in morpho-logical and physiological traits of Passiflora edulis Sims under different drought conditions were studied.A t... In order to explore the response mechanism of Passiflora edulis Sims to drought stress,the changes in morpho-logical and physiological traits of Passiflora edulis Sims under different drought conditions were studied.A total of 7 germplasm resources of Passiflora edulis Sims were selected and tested under drought stress by the pot culture method under 4 treatment levels:75%–80%(Control,CK)of maximumfield water capacity,55%–60%(Light Drought,LD)of maximumfield water capacity,i.e.,mild drought,40%–45%(Moderate Drought,MD)of max-imumfield water capacity,i.e.,moderate drought and 30%–35%(Severe Drought,SD)of maximumfield water capacity,i.e.,severe drought.On the 40th day of drought treatment,13 indices,including seedling growth mor-phology,physiology,and biochemistry,were measured.The results showed that under drought stress,the height and ground diameter of P.edulis Sims gradually decreased with increasing drought stress,and there were signifi-cant differences in seedling height and ground diameter among the treatments.Drought stress significantly inhib-ited the growth of seven P.edulis Sims varieties.The contents of soluble sugar(SS),soluble protein(SP),proline(Pro),and other substances in P.edulis Sims basically increased with increasing drought stress.With the aggrava-tion of drought stress,the malondialdehyde(MDA)content of P.edulis Sims tended to increase to different degrees,the superoxide dismutase(SOD)activity and peroxidase(POD)activity both tended to increase atfirst and then decrease,and the change in catalase(CAT)activity mostly showed a gradual increasing trend.The con-tents of endogenous hormones in P.edulis Sims significantly differed under different degrees of drought stress.With the aggravation of drought stress,the abscisic acid(ABA)content of P.edulis Sims tended to increase,whereas the contents of gibberellin(GA),indoleacetic acid(IAA),and zeatin nucleoside(ZR)exhibited a down-ward trend.A comprehensive evaluation of the drought resistance of seven P.edulis Sims varieties was conducted based on the principal component analysis method,and the results showed that the drought resistance decreased in the order XH-BL>XH-TWZ>TN1>GH1>ZJ-MT>LP-LZ>DH-JW. 展开更多
关键词 Drought resistance water stress PHYTOHORMONE morphological trait physiological traits
下载PDF
Physiological and Transcriptome Analysis Illuminates the Molecular Mechanisms of the Drought Resistance Improved by Alginate Oligosaccharides in Triticum aestivum L.
9
作者 Yunhong Zhang Yonghui Yang Jiawei Mao 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期185-212,共28页
Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with ... Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000.The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress.A total of 10,064 and 15,208 differentially expressed unigenes(DEGs)obtained from the AOS treatment and control samples at 24 and 72 h after dehydration,respectively,were mainly enriched in the biosynthesis of secondary metabolites(phenylpropanoid biosynthesis,flavonoid biosynthesis),carbohydrate metabolism(starch and sucrose metabolism,carbon fixation in photosynthetic organisms),lipid metabolism(fatty acid elongation,biosynthesis of unsaturated fatty acids,alpha-linolenic acid metabolism,cutin,suberine and wax biosynthesis),and signaling transduction pathways.The up-regulated genes were related to,for example,chlorophyll a-b binding protein,amylosynthease,phosphotransferase,peroxidase,phenylalanine ammonia lyase,flavone synthase,glutathione synthetase.Signaling molecules(including MAPK,plant hormones,H_(2)O_(2) and calcium)and transcription factors(mainly including NAC,MYB,MYB-related,WRKY,bZIP family members)were involved in the AOS-induced wheat drought resistance.The results obtained in this study help underpin the mechanisms of wheat drought resistance improved by AOS,and provides a theoretical basis for the application of AOS as an environmentally sustainable biological method to improve drought resistance in agriculture. 展开更多
关键词 Alginate oligosaccharides Triticum aestivum L. drought resistance TRANSCRIPTOMIC physiological analysis
下载PDF
Effects of Light Quality on Growth and Physiological Characteristics of Neopyropia yezoensis Free Living Conchocelis
10
作者 Cuicui TIAN Qinqin LU +3 位作者 Yinyin DENG Chuanming HU Wei ZHOU Guangping XU 《Asian Agricultural Research》 2024年第9期32-37,共6页
[Objectives]To study the differences of growth rate,morphology,ultrastructure,pigment content and antioxidant enzyme activity of free-living conchocelis of cultivated type of Neopyropia yezoensis under different light... [Objectives]To study the differences of growth rate,morphology,ultrastructure,pigment content and antioxidant enzyme activity of free-living conchocelis of cultivated type of Neopyropia yezoensis under different light qualities(white,red,blue,and green light).[Methods]The study was carried out through light quality design and culture,growth rate determination,microstructure and ultrastructure observation,chlorophyll a content and carotenoid content determination,phycobiliprotein content determination,malondialdehyde(MDA)content determination,superoxide dismutase(SOD)activity determination.[Results]After 21 d of culture,the specific growth rate(SGR)and chlorophyll a content of free-living conchocelis of N.yezoensis were significantly increased by white light(WL),followed by red light(RL)and green light(GL),and they were the lowest under blue light(BL).Compared with the WL group,the BL group had the highest content of phycoerythrin(PE),and the RL and GL groups had the highest content of phycocyanin(PC).The algal body of WL group was normal black brown,and the cell wall was the thickest.In RL and GL groups,the algal bodies were green,and their diameters and cell wall thicknesses were similar to those in WL group.In BL group,the algal body was bright red,the diameter was the smallest,the cell wall was the thinnest,and the ultrastructure showed that the number of plastoglobulus on the thylakoid was the largest.After BL irradiation,the highest MDA content and the lowest SOD activity were observed.The results revealed that WL is the most beneficial to the growth of free-living conchocelis,followed by RL and GL,while BL has adverse effects.[Conclusions]This study explored the most suitable light quality conditions for the propagation of free-living conchocelis.It is expected to provide germplasm guarantee for the production and seedling of N.yezoensis. 展开更多
关键词 Neopyropia yezoensis FREE-LIVING CONCHOCELIS Light quality GROWTH physiological characteristics
下载PDF
Physiological Analysis of Drought Resistance of Seven Cultivars Spring Wheat in Northern Regions of China
11
作者 Gao Fengmei Zhang Fuzhi +8 位作者 Zhao Yuanling Li Tie Li Dongmei Sun Minglong Zhang Qichang Liu Ningtao Sun Dan Tian Chao Sun Lianfa 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第2期1-12,共12页
In order to determine the physiological mechanism of drought resistance of northern wheat in China,six drought resistant wheat and one sensitivity to drought wheat were planted in pots.They were subjected to drought t... In order to determine the physiological mechanism of drought resistance of northern wheat in China,six drought resistant wheat and one sensitivity to drought wheat were planted in pots.They were subjected to drought treatment and normal water when the plants grew to the 3-leaf stage.Samples were collected at 10,20,30,and 40 days after the drought treatment,respectively.The electrical conductivity,photosynthetic parameters,chlorophyll fluorescence parameters,sugar content,proline content,protein content,and active oxygen scavenging enzyme activity of the plants were detected,and the agronomic traits of the wheat varieties were investigated at maturity.The results indicated that the phenotype and yield-related factors of Darkhan 144 changed little under the drought stress.The relative electrical conductivity of Kefeng 6 and Darkhan 166 was lower under the drought stress,and their cell membrane was less damaged.The Darkhan 144 and Darkhan 166 had higher drought resistance coefficients,and were the wheat varieties with stronger drought resistance.However,the physiological mechanisms of drought resistance of these three wheat were different:Darkhan 144 maintained a higher photosynthetic activity under the drought stress;Darkhan 166 maintained a higher protein content,photosynthetic activity and active oxygen scavenging enzyme activity.In addition,other drought-resistant varieties Kefeng 6,Kefeng 10 and Longmai 26 had a higher content of osmoregulatory substances under the drought stress. 展开更多
关键词 WHEAT tolerance drought physiological mechanism
下载PDF
Estimation of the water productivity of different varieties of wheat and rice in the context of agronomic, physiological and nutritional attributes
12
作者 Moneeza Abbas Sadia Nawaz +4 位作者 Ammara Fatima Muhammad Kamran Fakhra Aslam Saima Atif Fatima Younas 《International Journal of Agricultural and Biological Engineering》 SCIE 2024年第5期200-205,共6页
Water shortage is a global concern, and it poses a particularly severe threat in Pakistan. It is estimated that over 60% of irrigation water is not efficiently applied or not efficiently utilized by crop depending upo... Water shortage is a global concern, and it poses a particularly severe threat in Pakistan. It is estimated that over 60% of irrigation water is not efficiently applied or not efficiently utilized by crop depending upon genetic variability. The pot study was conducted to evaluate the water efficiency of various wheat varieties (Millat 2011, Galaxy 2013, Faisalabad 2008, and Gandum-1) and rice varieties (Punjab Basmati, Chenab Basmati, B-515, and PS-2) based on their photosynthetic efficiency and nutritional quality by measuring their protein and chlorophyll contents. The highest concentrations of protein and chlorophyll were observed in plants of both crops that were watered and cultivated with 50 mL of water. For wheat, the greatest leaf length (cm), net assimilation rate [g/(d∙m2)], and photosynthetic efficiency were achieved when 80 mL of water was applied. Similarly, rice varieties (Punjab Basmati, Chenab Basmati, B-515, and PS-2) exhibited the highest photosynthetic efficiency, leaf length, net assimilation rate, and chlorophyll content when grown with 80 mL of water. Therefore, a conservative cultivation of wheat and rice is possible by selecting efficient varieties and by improving the technological approach of water saving through irrigation level and wise scheduling. The judicious use of water not only limits losses but also improves productivity, particularly in scenarios of water scarcity. 展开更多
关键词 water productiviy WHEAT RICE AGRONOMY PHYSIOLOGY nutrition
原文传递
Transcriptomic and physiological analyses identifying Lanzhou lily(Lilium davidii var.unicolor)drought adaptation strategies 被引量:6
13
作者 Wenmei Li Yajun Wang +4 位作者 Heng Ren Zhihong Guo Na Li Chengzheng Zhao Zhongkui Xie 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第1期145-157,共13页
Drought stress is the main limiting plant growth factor in arid and semiarid regions.The Lanzhou lily(Lilium davidii var.unicolor)is the only sweet-tasting lily grown in these regions of China that offers highly edibl... Drought stress is the main limiting plant growth factor in arid and semiarid regions.The Lanzhou lily(Lilium davidii var.unicolor)is the only sweet-tasting lily grown in these regions of China that offers highly edible,medicinal,health,and ornamental value.The Tresor lily is an ornamental flower known for its strong resistance.Plants were grown under three different drought intensity treatments,namely,being watered at intervals of 5,15,and 25 d(either throughout the study or during specific growth stages).We measured the biomass,leaf area,photosynthetic response,chlorophyll content(SPAD value),and osmoregulation of both the Lanzhou lily and the Tresor lily(Lilium‘Tresor’).Additionally,we employed RNA sequencing(RNA-Seq)and qRT-PCR to investigate transcriptomic changes of the Lanzhou lily in response to drought stress.Results showed that under drought stress,the decreasing rate in the Lanzhou lily bulb weight was lower than the corresponding Tresor lily bulb rate;the net photosynthetic rate,transpiration rate,and stomatal conductance of the Lanzhou lily were all higher compared to the Tresor lily;osmoregulation constituents,such as glucose,fructose,sucrose,trehalose,and soluble sugar,in the Lanzhou lily were comparatively higher;PYL,NCED,and ERS genes were significantly expressed in the Lanzhou lily.Under moderate drought,the biosynthesis of flavonoids,circadian rhythms,and the tryptophan metabolism pathway of the Lanzhou lily were all significant.Under severe drought stress,fatty acid elongation,photosynthetic antenna protein,plant hormone signal transduction,flavone and flavonol biosynthesis,and the carotenoid biosynthesis pathway were all significant.The Lanzhou lily adapted to drought stress by coordinating its organs and the unique role of its bulb,regulating photosynthesis,increasing osmolyte content,activating circadian rhythms,signal transduction,fatty acid elongation metabolism,and phenylalanine and flavonoid metabolic pathways,which may collectively be the main adaptation strategy and mechanisms used by the Lanzhou lily under drought stress. 展开更多
关键词 Drought stress Adaptation strategy OSMOLYTES Lanzhou lily physiological characterization Transcription profiles
下载PDF
Physiological Responses of Clam(Ruditapes philippinarum)to Transport Modes with Different Temperatures 被引量:1
14
作者 BI Shijie XUE Changhu +4 位作者 XU Lili WEN Yunqi WANG Lihao LI Zhaojie LIU Hongying 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期517-526,共10页
Given the increased circulation time after fishing,a series of changes take place in live clams,leading to a deterioration in quality even after death.Thus,in this study,we aimed to explore the optimal mode of transpo... Given the increased circulation time after fishing,a series of changes take place in live clams,leading to a deterioration in quality even after death.Thus,in this study,we aimed to explore the optimal mode of transportation of clams.The container for holding clams was reformed,and a water circulation temperature control system was established.The physiological responses of clams during anhydrous and watery transportation at two temperatures(4 and 15℃)were investigated based on the aforementioned system.When comparing the transportation patterns after 3 d of transport,a higher survival rate was observed at 4℃(97%)than at 15℃(63%)in the anhydrous transportation groups and a lower survival rate was observed at 4℃(93%)than at 15℃(99%)in the watery transportation groups.In addition,the glycogen content,condition index(CI),and adenylate energy charge(A.E.C)value were higher at4℃((40.87±0.99)mg g^(-1),13.71%±0.50%and 57.45%±1.60%)than at 15℃((30.54±0.81)mg g^(-1),9.09%±0.30%and 43.12%±1.65%)in the anhydrous transportation groups.In the watery transportation groups,a lower glycogen content,CI,and A.E.C.value were observed at 4℃((33.78±0.84)mg g^(-1),9.78%±0.50%and 64.65%±1.25%)than at 15℃((41.53±0.93)mg g^(-1),12.72%±0.83%and 71.58%±1.27%).Results from this study show that anhydrous transportation(4℃)is the optimal transport condition for clams to maintain a high quality and good physiological conditions.Thus,this study will be particularly useful for establishing shellfish transportation systems. 展开更多
关键词 watery transportation anhydrous transportation CLAM physiological response TEMPERATURE
下载PDF
Leaf thermal tolerance and sensitivity of temperate tree species are correlated with leaf physiological and functional drought resistance traits
15
作者 Ines Katharina Münchinger Peter Hajek +2 位作者 Berivan Akdogan Astor Torano Caicoya Norbert Kunert 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第1期63-76,共14页
Climate change is causing more frequent and severe climatic events,such as extreme heat and co-occurring drought,potentially accelerating tree mortality.Which tree species will cope better with those extreme events is... Climate change is causing more frequent and severe climatic events,such as extreme heat and co-occurring drought,potentially accelerating tree mortality.Which tree species will cope better with those extreme events is still being researched.This study focuses on heat as a physiological stress factor and interspecifi c variation of thermal tolerance and sensitivity traits in 15 temperate coniferous and broad-leaved tree species.We investigate(1)whether thermal tolerance and sensitivity traits correlate with a droughtrelated physiological trait,particularly the leaf turgor loss point(πtlp,wilting point),and(2)how thermal tolerance and sensitivity traits co-vary within diff erent tree-functional types classifi ed by morphological and physiological traits of the leaf,i.e.,leaf mass per area(LMA)and percentage loss of area(PLA).The study was carried out in the Traunstein Forest Dynamics Plot of the ForestGEO network in Germany.The temperature response of the maximum quantum yield of photosystem II(F_(v)/F_(m))on leaf discs was determined,from which various physiological leaf traits were estimated,one of which is the breaking point temperature(T_(5)),the temperature at which F_(v)/F_(m)declines by 5%.Additionally,the temperature of 50%(T_(50))and 95%(T_(95))decline in F_(v)/F_(m)was evaluated.The decline width between T_(50)and T 5(DW T_(50)−T_(5))was taken as an indicator of the species’thermal sensitivity.The breaking point temperature ranged from 35.4±3.0 to 47.9±3.9℃among the investigated tree species and T 50 ranged between 46.1±0.4 and 53.6±0.7℃.A large interspecifi c variation of thermal tolerance and sensitivity was found.European ash(Fraxinus excelsior L.)was the most heat-sensitive species,while Wild cherry(Prunus avium L.)was the least heat-sensitive species.Species with a more negativeπtlp tended to have a higher breaking point temperature than species with a less negativeπtlp.A lower thermal sensitivity characterized species with a higher LMA,and high PLA was found in species with low thermal sensitivity.Accordingly,species with thicker and tougher leaves have lower thermal sensitivity which coincides with a lower wilting point.We conclude that species that develop drought-adapted foliage can cope better with heat stress.Further,they might be able to maintain transpirational cooling during combined heat and drought stress,which could lessen their mortality risk during climatic extremes. 展开更多
关键词 Water stress Heat stress physiological limitations Climate change ForestGEO
下载PDF
Salt stress responses in foxtail millet:Physiological and molecular regulation
16
作者 Changai Wu Meng Zhang +2 位作者 Yifan Liang Lei Zhang Xianmin Diao 《The Crop Journal》 SCIE CSCD 2023年第4期1011-1021,共11页
Foxtail millet(Setaria italica L.),a member of the Paniceae family,is a temperate and tropical grass species that is widely cultivated on the Eurasian continent.It is Chinese in origin and possesses a small genome,sho... Foxtail millet(Setaria italica L.),a member of the Paniceae family,is a temperate and tropical grass species that is widely cultivated on the Eurasian continent.It is Chinese in origin and possesses a small genome,short growth cycle,and strong natural abiotic stress resistance.Elucidating the mechanism of millet tolerance to salt stress is becoming increasingly important with increasing soil salinization limiting crop productivity.The responses and mechanisms of tolerance to salt stress from other model plants such as Arabidopsis and rice,were compared with those from foxtail millet to summarize current research on responses to salt stress.Numerous processes are involved in these processes,including physiological reactions,sensing,signaling,and control at the transcriptional,post-transcriptional,and epigenetic levels.To increase crop productivity and agricultural sustainability,a variety of technologies can be used to investigate how salt tolerance is mediated by physiological and molecular processes in foxtail millet. 展开更多
关键词 Foxtail millet SALINITY physiological responses Molecular regulation Crop productivity
下载PDF
Rhizobacteria facilitate physiological and biochemical drought tolerance of Halimodendron halodendron (Pall.) Voss
17
作者 Mohammad Hossein TAGHIZADEH Mohammad FARZAM Jafar NABATI 《Journal of Arid Land》 SCIE CSCD 2023年第2期205-217,共13页
Growth-promoting bacteria(GPB)have shown promising effects on serving plants against environmental constraints such as drought.Nevertheless,simultaneous effects of different GPB have less been considered for arid land... Growth-promoting bacteria(GPB)have shown promising effects on serving plants against environmental constraints such as drought.Nevertheless,simultaneous effects of different GPB have less been considered for arid land plants and under field conditions.We investigated the effects of single and combined application of GPB,including free-living nitrogen-fixing bacteria(NFB),phosphate solubilizing bacteria(PSB),potassium solubilizing bacteria(KSB),a combination of NFB,PSB,and KSB(NPK),and control,at three drought stress treatments.In order to better understand the interactions between drought and GPB,we measured the morphological,biochemical,and physiological plant traits.The target plant was salt tree(Halimodendron Halodendron(Pall.)Voss),a legume shrub native to arid lands of Central and West Asia.All biofertilizer treatments enhanced the growth,physiology,and biochemistry of salt tree seedlings,and there were significant differences among the treatments.KSB and PSB treatments increased photosynthetic pigments,but KSB treatment was more efficient in transpiration rate and stomatal regulation and increased the soluble carbohydrates.PSB treatment had the highest effect on root traits,such as taproot length,root volume,cumulative root length,and the ratio of root to shoot.NFB treatment enhanced root diameter and induced biomass translocation between root systems.However,only the application of mixed biofertilizer(i.e.,NPK treatment)was the most significant treatment to improve all plant morphological and physiological characteristics of salt tree under drought stress.Therefore,our results provided improvement of some specific plant traits simultaneous with application of three biofertilizers to increase growth and establishment of salt tree seedlings in the degraded arid lands. 展开更多
关键词 growth-promoting bacteria physiological traits drought stress BIOFERTILIZER root traits Halimodendron Halodendron(Pall.)Voss
下载PDF
Psychological and Physiological Health Benefits of a Structured Forest Therapy Program for Children and Adolescents with Mental Health Disorders
18
作者 Namyun Kil Jin Gun Kim +1 位作者 Emily Thornton Amy Jeranek 《International Journal of Mental Health Promotion》 2023年第10期1117-1125,共9页
Mental health conditions in children and adolescents can be improved by slow mindful nature connection known as forest therapyor bathing.Forest therapy has recently received growing attention as an enabler of relaxati... Mental health conditions in children and adolescents can be improved by slow mindful nature connection known as forest therapyor bathing.Forest therapy has recently received growing attention as an enabler of relaxation and preventive health care withdemonstrated clinical efficacy.However,it is not well-known that forest therapy also decreases mental health issues amongindividuals with mental health disorders.This study explored the psychological and physiological health benefits of structuredforest therapy programs for children and adolescents with mental health disorders.A one-group pre-test-posttest design wasemployed for our study participants.Twelve participants(aged 9–14 years)engaged in two one-hour guided standard sequenceforest therapy experiences.A Mindful Attention Awareness Scale(MAAS),Connectedness to Nature Scale(CNS),Profile ofMood States(POMS),place meanings(e.g.,functional,emotional,and cognitive attachment to the forest)questionnaire,andphysiological health assessment were administered to the participants.Our results showed that negative mood states weresignificantly reduced and that a positive mood state was significantly improved after the structured forest therapy programs.Also,mindfulness,nature connection,place meanings,and physiological health were significantly boosted after theinterventions.The results demonstrate substantial psychological and physiological health and well-being outcomes ofstructured forest therapy for similar individuals. 展开更多
关键词 Forest therapy mental health disorders MINDFULNESS mood states place meanings physiological health
下载PDF
Effects of Antimony Stress on Root Growth,Antimony Accumulation and Physiological Characteristics of Ramie(Boehmeria nivea(L.) Gaudich.)
19
作者 Jiecheng HAN Yaxuan LIU +4 位作者 Xingguo ZHAN Jingyao LUO Fulong YANG Jing ZHOU Guiyuan MENG 《Agricultural Biotechnology》 CAS 2023年第1期8-11,15,共5页
[Objectives]This study was conducted to investigate the toxicity of heavy metal antimony(Sb) to ramie(Boehmeria nivea(L.) Gaudich.) and the tolerance response in ramie. [Methods] A pot experiment was conducted to stud... [Objectives]This study was conducted to investigate the toxicity of heavy metal antimony(Sb) to ramie(Boehmeria nivea(L.) Gaudich.) and the tolerance response in ramie. [Methods] A pot experiment was conducted to study the effects of Sb stress on root growth and Sb accumulation and transport of the root system of cultivated ramie Zhongzhu No.1, as well as on the physiological characteristics of ramie leaves. [Results] The plant height and root dry weight and volume of Zhongzhu No.1 showed an effect of "promoting at low concentrations and inhibiting at high concentrations" with the increase of Sb concentration, and decreased significantly at the concentration of 4 000 mg/kg, but no obvious toxic growth symptoms were observed. The content of Sb in roots(289.7-508.6 mg/kg) and the root-shoot transfer factor(0.09-0.57) of Zhongzhu No.1 increased with the increase of soil Sb concentration, but the change of Sb bioconcentration factor in roots was opposite, indicating that high concentrations of Sb in soil could promote the absorption of Sb in roots and the transport of Sb to the aboveground part, but the Sb enrichment capacity of roots was relatively reduced with the increase of soil Sb. Sb stress had a certain impact on the physiological characteristics of ramie leaves. With the increase of Sb treatment concentration, MDA, POD and SOD showed a change trend of "first increasing and then decreasing", while CAT gradually increased, indicating that Sb stress caused changes in the physiological characteristics of ramie leaves, thereby affecting plant growth and development. [Conclusions] This study provides a theoretical basis for ecological restoration of ramie in mining areas. 展开更多
关键词 ANTIMONY RAMIE Root growth Sb enrichment physiological characteristics
下载PDF
Seed Dormancy and Seedlings Physiological Response to Topramezone in Green Foxtail(Setaria viridis)
20
作者 Ding Wei Chang Xin-yue +1 位作者 Cheng Zhuo Cheng Peng 《Journal of Northeast Agricultural University(English Edition)》 2023年第4期32-42,共11页
Green foxtail(Setaria viridis)is a notorious weed in corn fields in Heilongjiang Province.To investigate the best method to break the seed dormancy of green foxtail and its physiological response to topramezone,this s... Green foxtail(Setaria viridis)is a notorious weed in corn fields in Heilongjiang Province.To investigate the best method to break the seed dormancy of green foxtail and its physiological response to topramezone,this study selected newly harvested and one-year stored green foxtail seeds as research subjects.The seeds were treated with HCl,Na OH,gibberellic acid(GA),different water temperatures and polyethylene glycol(PEG)to study the seed dormancy and drought resistance of green foxtail.The results showed that newly harvested seeds exhibited dormancy,and treatments with HCl,NaOH and different water temperatures were unable to break the dormancy.Soaking the seeds in GA could overcome dormancy,but the seeds failed to germinate when exposed to 25%PEG concentration.When topramezone was applied at rates of 22.5 and 45.0 g a.i.·hm^(-2)at the 3-leaf and 5-leaf stages,respectively,the chlorophyll content reached the lowest value at 28 days after treatment(DAT).At the 7-leaf stage,the chlorophyll content reached the lowest value at 7 DAT.The activity of 4-hydroxyphenylpy-ruvate dioxygenase(HPPD)enzyme after topramezone application reached the maximum value at 7 DAT for different leaf ages,and the higher the leaf age,the higher the HPPD activity,which was an important factor contributing to the resistance of green foxtail to topramezone. 展开更多
关键词 green foxtail seed dormancy topramezone physiological response
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部