Organic-inorganic MoO_(3)/PI(MoPI)composites were prepared using a simple one-pot thermal copolymerization method.The resulting composites exhibited enhanced photocatalytic activity for the selective oxidation of benz...Organic-inorganic MoO_(3)/PI(MoPI)composites were prepared using a simple one-pot thermal copolymerization method.The resulting composites exhibited enhanced photocatalytic activity for the selective oxidation of benzylamine to N-benzylidene benzylamine(N-BDBA)in ambient air under simulated solar light irradiation compared to pristine MoO_(3) or polyimide(PI).In particular,the MoPI composite with a 0.3:1 molar ratio of Mo to melamine,referred to as MoPI-0.3,demonstrated the best performance in the photo-oxidation of benzylamine,achieving a benzylamine conversion of 95%with a N-BDBA selectivity exceeding 99%after 3 h irradiation.The enhanced photocatalytic activity of the MoPI-0.3 catalyst was attributed to the formation of a direct Z-scheme heterojunction between MoO_(3) and PI,facilitating more efficient separation of the photoinduced electrons and holes.Additionally,the MoPI-0.3 composite maintained considerably high activity over four consecutive cycles,highlighting its good stability and recyclability.Furthermore,the MoPI-0.3 composite could photo-oxidize benzylamine derivatives and heterocyclic amines to their corresponding imines,demonstrating the universal applicability of this composite catalyst.展开更多
The laser-induced porous graphene(LIG)prepared in a straightforward fabrication method is presented,and its applications in stretchable strain sensors to detect the applied strain are also explored.The LIGformed on th...The laser-induced porous graphene(LIG)prepared in a straightforward fabrication method is presented,and its applications in stretchable strain sensors to detect the applied strain are also explored.The LIGformed on the polyimide/polydimethylsiloxane(PI/PDMS)composite exhibits a naturally high stretchabil-ity(over 30%),bypassing the transfer printing process compared to the one prepared by laser scribing onPI films.The PI/PDMS composite with LIG shows tunable mechanical and electronic performances withdifferent PI particle concentrations in PDMS.The good cyclic stability and almost linear response of theprepared LIG’s resistance with respect to tensile strain provide its access to wearable electronics.To im-prove the PDMS/PI composite stretchability,we designed and optimized a kirigami-inspired strain sensorwith LIG on the top surface,dramatically increasing the maximum strain value that in linear response toapplied strain from 3%to 79%.展开更多
Flexible multifunctional polymer-based electromagnetic interference(EMI)shielding composite films have important application values in the fields of 5G communication technology,wearable electronic devices and artifici...Flexible multifunctional polymer-based electromagnetic interference(EMI)shielding composite films have important application values in the fields of 5G communication technology,wearable electronic devices and artificial intelligence.In this work,Fe_(3)O_(4)/polyamic acid(PAA)nanofiber films are prepared by in-situ polymerization and electrospinning technology,and Ti_(3)C_(2)T_(x)nanosheets are deposited on the surface of the Fe_(3)O_(4)/PAA nanofiber films via vacuum-assisted filtration.Then,Janus Ti_(3)C_(2)T_(x)-(Fe_(3)O_(4)/polyimide(PI))composite films are obtained by thermal imidization.The two sides of the Janus films exhibit completely different properties.The Fe_(3)O_(4)/PI side has excellent hydrophobicity and insulation property,and the Ti_(3)C_(2)T_(x)side has hydrophilicity and terrific conductivity.When the mass fraction of Ti_(3)C_(2)T_(x)is 80 wt.%,the Janus Ti_(3)C_(2)T_(x)-(Fe_(3)O_(4)/PI)composite film has excellent EMI shielding performances and mechanical properties,with EMI shielding effectiveness,tensile strength and Young’s modulus reaching 66 dB,114.5 MPa and 5.8 GPa,respectively.At the same time,electromagnetic waves show different absorption shielding effectiveness(SEA)when incident from two sides of the Janus films.When the electromagnetic waves are incident from the Fe_(3)O_(4)/PI side,the SEA of the Janus film is 58 dB,much higher than that when the electromagnetic waves are incident from the Ti_(3)C_(2)T_(x)side(39 dB).In addition,the Ti_(3)C_(2)T_(x)side of the Janus Ti_(3)C_(2)T_(x)-(Fe_(3)O_(4)/PI)composite films also has excellent electrothermal and photothermal conversion performances.When the applied voltage is 4 V,the stable surface temperature reaches 108°C;when it is irradiated by simulated sunlight with power density of 200 mW/cm2,the stable surface temperature reaches 95℃.展开更多
基金supported by the Opening Project of Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan (LZJ2101)the Fundamental Research Funds of China West Normal University (19D038)
文摘Organic-inorganic MoO_(3)/PI(MoPI)composites were prepared using a simple one-pot thermal copolymerization method.The resulting composites exhibited enhanced photocatalytic activity for the selective oxidation of benzylamine to N-benzylidene benzylamine(N-BDBA)in ambient air under simulated solar light irradiation compared to pristine MoO_(3) or polyimide(PI).In particular,the MoPI composite with a 0.3:1 molar ratio of Mo to melamine,referred to as MoPI-0.3,demonstrated the best performance in the photo-oxidation of benzylamine,achieving a benzylamine conversion of 95%with a N-BDBA selectivity exceeding 99%after 3 h irradiation.The enhanced photocatalytic activity of the MoPI-0.3 catalyst was attributed to the formation of a direct Z-scheme heterojunction between MoO_(3) and PI,facilitating more efficient separation of the photoinduced electrons and holes.Additionally,the MoPI-0.3 composite maintained considerably high activity over four consecutive cycles,highlighting its good stability and recyclability.Furthermore,the MoPI-0.3 composite could photo-oxidize benzylamine derivatives and heterocyclic amines to their corresponding imines,demonstrating the universal applicability of this composite catalyst.
基金from the National Natural ScienceFoundation of China(Grant No.12072030).
文摘The laser-induced porous graphene(LIG)prepared in a straightforward fabrication method is presented,and its applications in stretchable strain sensors to detect the applied strain are also explored.The LIGformed on the polyimide/polydimethylsiloxane(PI/PDMS)composite exhibits a naturally high stretchabil-ity(over 30%),bypassing the transfer printing process compared to the one prepared by laser scribing onPI films.The PI/PDMS composite with LIG shows tunable mechanical and electronic performances withdifferent PI particle concentrations in PDMS.The good cyclic stability and almost linear response of theprepared LIG’s resistance with respect to tensile strain provide its access to wearable electronics.To im-prove the PDMS/PI composite stretchability,we designed and optimized a kirigami-inspired strain sensorwith LIG on the top surface,dramatically increasing the maximum strain value that in linear response toapplied strain from 3%to 79%.
基金supports from the National Natural Science Foundation of China(Nos.U21A2093 and 51903145)Fundamental Research Funds for the Central Universities(No.D5000210627)+1 种基金Y.L.Z.would like to thank the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX2021107)This work is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘Flexible multifunctional polymer-based electromagnetic interference(EMI)shielding composite films have important application values in the fields of 5G communication technology,wearable electronic devices and artificial intelligence.In this work,Fe_(3)O_(4)/polyamic acid(PAA)nanofiber films are prepared by in-situ polymerization and electrospinning technology,and Ti_(3)C_(2)T_(x)nanosheets are deposited on the surface of the Fe_(3)O_(4)/PAA nanofiber films via vacuum-assisted filtration.Then,Janus Ti_(3)C_(2)T_(x)-(Fe_(3)O_(4)/polyimide(PI))composite films are obtained by thermal imidization.The two sides of the Janus films exhibit completely different properties.The Fe_(3)O_(4)/PI side has excellent hydrophobicity and insulation property,and the Ti_(3)C_(2)T_(x)side has hydrophilicity and terrific conductivity.When the mass fraction of Ti_(3)C_(2)T_(x)is 80 wt.%,the Janus Ti_(3)C_(2)T_(x)-(Fe_(3)O_(4)/PI)composite film has excellent EMI shielding performances and mechanical properties,with EMI shielding effectiveness,tensile strength and Young’s modulus reaching 66 dB,114.5 MPa and 5.8 GPa,respectively.At the same time,electromagnetic waves show different absorption shielding effectiveness(SEA)when incident from two sides of the Janus films.When the electromagnetic waves are incident from the Fe_(3)O_(4)/PI side,the SEA of the Janus film is 58 dB,much higher than that when the electromagnetic waves are incident from the Ti_(3)C_(2)T_(x)side(39 dB).In addition,the Ti_(3)C_(2)T_(x)side of the Janus Ti_(3)C_(2)T_(x)-(Fe_(3)O_(4)/PI)composite films also has excellent electrothermal and photothermal conversion performances.When the applied voltage is 4 V,the stable surface temperature reaches 108°C;when it is irradiated by simulated sunlight with power density of 200 mW/cm2,the stable surface temperature reaches 95℃.