In this paper, fractional order PI(FOPI) control is developed for speed control of permanent magnet synchronous motor(PMSM). Designing the parameters for FOPI controller is a challenging task, especially for nonlinear...In this paper, fractional order PI(FOPI) control is developed for speed control of permanent magnet synchronous motor(PMSM). Designing the parameters for FOPI controller is a challenging task, especially for nonlinear systems like PMSM.All three PI controllers in the conventional vector controlled speed drive are replaced by FOPI controllers. Design of these FOPI controllers is based on the locally linearized model of PMSM around an operating point. This operating point changes with the load torque. The novelty of the work reported here is in use of Non Linear Disturbance Observer(NLDO) to estimate load torque to obtain this new operating point. All three FOPI controllers are then designed adaptively using this new operating point. The scheme is tested on simulation using MATLAB/SIMULINK and results are presented.展开更多
The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of ...The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of the system,a fast non-singular end sliding mode(FNTSM)surface function based on traditional NTSM control is developed.The theoretical analysis proves that the FNTSM surface function has a faster dynamic response and more finite-time convergence.In addition,for the self-vibration problem caused by high sliding mode switching gain,an FNTSM control method with anti-disturbance capability was designed based on the linear disturbance observer(DO),i.e.the FNTSMDO method was employed to devise the PMSM speed regulator.The comparative simulation and experiment results with traditional PI control and NTSM control methods indicate that the FNTSMDO method could improve the dynamic performance and anti-interference of the system.展开更多
For the discrete-time system which is subjected to uncoupled actuator faults and sensor faults simultaneously,a robust fault diagnosis method based on a proportional integral observer (PIO) is presented.The proposed P...For the discrete-time system which is subjected to uncoupled actuator faults and sensor faults simultaneously,a robust fault diagnosis method based on a proportional integral observer (PIO) is presented.The proposed PIO uses an additionally introduced integral term of the output errors to obtain the estimationof actuator faults. Besides, the sensor faults are regarded as the augment states so that the PIO cantrace them. Moreover, the convergence of the PIO is proved. A variable speed wind turbine(VWT) exampleis given to demonstrate the fast convergence and diagnosis precision of the proposed PIO.展开更多
This paper studies the problem of diagnosis strategy for a doubly fed induction motor (DFIM) sensor faults. This strategy is based on unknown input proportional integral (PI) multiobserver. Thecontribution of this pap...This paper studies the problem of diagnosis strategy for a doubly fed induction motor (DFIM) sensor faults. This strategy is based on unknown input proportional integral (PI) multiobserver. Thecontribution of this paper is on one hand the creation of a new DFIM model based on multi-model approach and, on the other hand, the synthesis of an adaptive PI multi-observer. The DFIM Volt per Hertz drive system behaves as a nonlinear complex system. It consists of a DFIM powered through a controlled PWM Voltage Source Inverter (VSI). The need of a sensorless drive requires soft sensors such as estimators or observers. In particular, an adaptive Proportional-Integral multi-observer is synthesized in order to estimate the DFIM’s outputs which are affected by different faults and to generate the different residual signals symptoms of sensor fault occurrence. The convergence of the estimation error is guaranteed by using the Lyapunov’s based theory. The proposed diagnosis approach is experimentally validated on a 1 kW Induction motor. Obtained simulation results confirm that the adaptive PI multiobserver consent to accomplish the detection, isolation and fault identification tasks with high dynamic performances.展开更多
为提高电机的驱动控制性能,提出了基于模糊自适应PI的异步电动机磁链观测器直接转矩控制(DTC)策略。其中,模糊PI控制算法能自动调整PI参数,使转速较快地到达稳定状态,并且无超调和机械脉动。为了改进转矩和磁链脉动大的缺点,采用自适应...为提高电机的驱动控制性能,提出了基于模糊自适应PI的异步电动机磁链观测器直接转矩控制(DTC)策略。其中,模糊PI控制算法能自动调整PI参数,使转速较快地到达稳定状态,并且无超调和机械脉动。为了改进转矩和磁链脉动大的缺点,采用自适应滑模方法设计磁链观测器,控制方法简单易行,所估计的转矩、磁链具有较高的精度且脉动明显较小。最后,通过d SPACE DS1104实验平台验证了所提策略的可行性。展开更多
文摘In this paper, fractional order PI(FOPI) control is developed for speed control of permanent magnet synchronous motor(PMSM). Designing the parameters for FOPI controller is a challenging task, especially for nonlinear systems like PMSM.All three PI controllers in the conventional vector controlled speed drive are replaced by FOPI controllers. Design of these FOPI controllers is based on the locally linearized model of PMSM around an operating point. This operating point changes with the load torque. The novelty of the work reported here is in use of Non Linear Disturbance Observer(NLDO) to estimate load torque to obtain this new operating point. All three FOPI controllers are then designed adaptively using this new operating point. The scheme is tested on simulation using MATLAB/SIMULINK and results are presented.
基金supported in part by the National Natural Science Foundation of China under Grant 51507188Doctoral Research Startup Foundation of Hubei University of Technology under Grant XJ2021000302。
文摘The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of the system,a fast non-singular end sliding mode(FNTSM)surface function based on traditional NTSM control is developed.The theoretical analysis proves that the FNTSM surface function has a faster dynamic response and more finite-time convergence.In addition,for the self-vibration problem caused by high sliding mode switching gain,an FNTSM control method with anti-disturbance capability was designed based on the linear disturbance observer(DO),i.e.the FNTSMDO method was employed to devise the PMSM speed regulator.The comparative simulation and experiment results with traditional PI control and NTSM control methods indicate that the FNTSMDO method could improve the dynamic performance and anti-interference of the system.
基金Supported by the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period (No. 2007BAF10B00).
文摘For the discrete-time system which is subjected to uncoupled actuator faults and sensor faults simultaneously,a robust fault diagnosis method based on a proportional integral observer (PIO) is presented.The proposed PIO uses an additionally introduced integral term of the output errors to obtain the estimationof actuator faults. Besides, the sensor faults are regarded as the augment states so that the PIO cantrace them. Moreover, the convergence of the PIO is proved. A variable speed wind turbine(VWT) exampleis given to demonstrate the fast convergence and diagnosis precision of the proposed PIO.
文摘This paper studies the problem of diagnosis strategy for a doubly fed induction motor (DFIM) sensor faults. This strategy is based on unknown input proportional integral (PI) multiobserver. Thecontribution of this paper is on one hand the creation of a new DFIM model based on multi-model approach and, on the other hand, the synthesis of an adaptive PI multi-observer. The DFIM Volt per Hertz drive system behaves as a nonlinear complex system. It consists of a DFIM powered through a controlled PWM Voltage Source Inverter (VSI). The need of a sensorless drive requires soft sensors such as estimators or observers. In particular, an adaptive Proportional-Integral multi-observer is synthesized in order to estimate the DFIM’s outputs which are affected by different faults and to generate the different residual signals symptoms of sensor fault occurrence. The convergence of the estimation error is guaranteed by using the Lyapunov’s based theory. The proposed diagnosis approach is experimentally validated on a 1 kW Induction motor. Obtained simulation results confirm that the adaptive PI multiobserver consent to accomplish the detection, isolation and fault identification tasks with high dynamic performances.
文摘为提高电机的驱动控制性能,提出了基于模糊自适应PI的异步电动机磁链观测器直接转矩控制(DTC)策略。其中,模糊PI控制算法能自动调整PI参数,使转速较快地到达稳定状态,并且无超调和机械脉动。为了改进转矩和磁链脉动大的缺点,采用自适应滑模方法设计磁链观测器,控制方法简单易行,所估计的转矩、磁链具有较高的精度且脉动明显较小。最后,通过d SPACE DS1104实验平台验证了所提策略的可行性。