We propose a novel approach called the robust fractional-order proportional-integral-derivative(FOPID)controller, to stabilize a perturbed nonlinear chaotic system on one of its unstable fixed points. The stability ...We propose a novel approach called the robust fractional-order proportional-integral-derivative(FOPID)controller, to stabilize a perturbed nonlinear chaotic system on one of its unstable fixed points. The stability analysis of the nonlinear chaotic system is made based on the proportional-integral-derivative actions using the bifurcation diagram. We extract an initial set of controller parameters, which are subsequently optimized using a quadratic criterion. The integral and derivative fractional orders are also identified by this quadratic criterion. By applying numerical simulations on two nonlinear systems, namely the multi-scroll Chen system and the Genesio-Tesi system,we show that the fractional PI~λD~μ controller provides the best closed-loop system performance in stabilizing the unstable fixed points, even in the presence of random perturbation.展开更多
基金Project supported by the Ministry of Higher Education and Scientific Research,Algeria(CNEPRU No.A10N01UN210120150002)
文摘We propose a novel approach called the robust fractional-order proportional-integral-derivative(FOPID)controller, to stabilize a perturbed nonlinear chaotic system on one of its unstable fixed points. The stability analysis of the nonlinear chaotic system is made based on the proportional-integral-derivative actions using the bifurcation diagram. We extract an initial set of controller parameters, which are subsequently optimized using a quadratic criterion. The integral and derivative fractional orders are also identified by this quadratic criterion. By applying numerical simulations on two nonlinear systems, namely the multi-scroll Chen system and the Genesio-Tesi system,we show that the fractional PI~λD~μ controller provides the best closed-loop system performance in stabilizing the unstable fixed points, even in the presence of random perturbation.