As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocrea...As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocreate a misleading perception among users. While early research primarily focused on text-based features forfake news detection mechanisms, there has been relatively limited exploration of learning shared representationsin multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal modelfor detecting fake news, which relies on similarity reasoning and adversarial networks. The model employsBidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural Network (Text-CNN) for extracting textual features while utilizing the pre-trained Visual Geometry Group 19-layer (VGG-19) toextract visual features. Subsequently, the model establishes similarity representations between the textual featuresextracted by Text-CNN and visual features through similarity learning and reasoning. Finally, these features arefused to enhance the accuracy of fake news detection, and adversarial networks have been employed to investigatethe relationship between fake news and events. This paper validates the proposed model using publicly availablemultimodal datasets from Weibo and Twitter. Experimental results demonstrate that our proposed approachachieves superior performance on Twitter, with an accuracy of 86%, surpassing traditional unimodalmodalmodelsand existing multimodal models. In contrast, the overall better performance of our model on the Weibo datasetsurpasses the benchmark models across multiple metrics. The application of similarity reasoning and adversarialnetworks in multimodal fake news detection significantly enhances detection effectiveness in this paper. However,current research is limited to the fusion of only text and image modalities. Future research directions should aimto further integrate features fromadditionalmodalities to comprehensively represent themultifaceted informationof fake news.展开更多
An internal defect meter is an instrument to detect the internal inclusion defects of cold-rolled strip steel.The detection accuracy of the equipment can be evaluated based on the similarity of the multiple detection ...An internal defect meter is an instrument to detect the internal inclusion defects of cold-rolled strip steel.The detection accuracy of the equipment can be evaluated based on the similarity of the multiple detection data obtained for the same steel coil.Based on the cosine similarity model and eigenvalue matrix model,a comprehensive evaluation method to calculate the weighted average of similarity is proposed.Results show that the new method is consistent with and can even replace artificial evaluation to realize the automatic evaluation of strip defect detection results.展开更多
Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode che...Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode chemical process effectively, this paper presents a novel fault detection method based on local neighborhood similarity analysis(LNSA). In the proposed method, prior process knowledge is not required and only the multimode normal operation data are used to construct a reference dataset. For online monitoring of process state, LNSA applies moving window technique to obtain a current snapshot data window. Then neighborhood searching technique is used to acquire the corresponding local neighborhood data window from the reference dataset. Similarity analysis between snapshot and neighborhood data windows is performed, which includes the calculation of principal component analysis(PCA) similarity factor and distance similarity factor. The PCA similarity factor is to capture the change of data direction while the distance similarity factor is used for monitoring the shift of data center position. Based on these similarity factors, two monitoring statistics are built for multimode process fault detection. Finally a simulated continuous stirred tank system is used to demonstrate the effectiveness of the proposed method. The simulation results show that LNSA can detect multimode process changes effectively and performs better than traditional fault detection methods.展开更多
In this paper, a video fire detection method is proposed, which demonstrated good performance in indoor environment. Three main novel ideas have been introduced. Firstly, a flame color model in RGB and HIS color space...In this paper, a video fire detection method is proposed, which demonstrated good performance in indoor environment. Three main novel ideas have been introduced. Firstly, a flame color model in RGB and HIS color space is used to extract pre-detected regions instead of traditional motion differential method, as it’s more suitable for fire detection in indoor environment. Secondly, according to the flicker characteristic of the flame, similarity and two main values of centroid motion are proposed. At the same time, a simple but effective method for tracking the same regions in consecutive frames is established. Thirdly,a multi-expert system consisting of color component dispersion,similarity and centroid motion is established to identify flames.The proposed method has been tested on a very large dataset of fire videos acquired both in real indoor environment tests and from the Internet. The experimental results show that the proposed approach achieved a balance between the false positive rate and the false negative rate, and demonstrated a better performance in terms of overall accuracy and F standard with respect to other similar fire detection methods in indoor environment.展开更多
A new paradigm for ship detection in polarimetric synthetic aperture radar(Pol-SAR)image is presented.We firstly utilize the scattering similarity parameters to investigate the differences of scattering mechanism betw...A new paradigm for ship detection in polarimetric synthetic aperture radar(Pol-SAR)image is presented.We firstly utilize the scattering similarity parameters to investigate the differences of scattering mechanism between ships and sea clutter.Based on these differences,we propose a novel ship detection metric,denoted as the scattering similarity based metric(SSM),to conduct ship detection task.The distribution model of SSM metric is investigated and modeled by kernel density estimation(KDE).Based on the statistical distribution,an adaptive constant false alarm rate(CFAR)detection scheme is implemented.We compare the proposed SSM with two classic polarimetric metrics,i.e.,the polarimetric cross-entropy(PCE)and the reflection symmetry metric(RSM).The experimental results conducted on C-band RADARSAT-2 Pol-SAR data demonstrate the feasibility and advantage of the proposed SSM metric both in sea clutter modeling and in ship detection.展开更多
To quickly find documents with high similarity in existing documentation sets, fingerprint group merging retrieval algorithm is proposed to address both sides of the problem:a given similarity threshold could not be t...To quickly find documents with high similarity in existing documentation sets, fingerprint group merging retrieval algorithm is proposed to address both sides of the problem:a given similarity threshold could not be too low and fewer fingerprints could lead to low accuracy. It can be proved that the efficiency of similarity retrieval is improved by fingerprint group merging retrieval algorithm with lower similarity threshold. Experiments with the lower similarity threshold r=0.7 and high fingerprint bits k=400 demonstrate that the CPU time-consuming cost decreases from 1 921 s to 273 s. Theoretical analysis and experimental results verify the effectiveness of this method.展开更多
Aimed at the problem of the end effect when using empirical mode decomposition(EMD),a method for constraining the end effect of EMD is proposed based on sequential similarity detection and adaptive filter.The method d...Aimed at the problem of the end effect when using empirical mode decomposition(EMD),a method for constraining the end effect of EMD is proposed based on sequential similarity detection and adaptive filter.The method divides the signal into many wavelets,and it changes the initial wavelet length to select the best initial wavelet that has the minimum error and maximum number of matching seed wavelets,and the wavelet slopes are used for pre-matching and secondary matching to speed up the matching speed.Then,folded self-adaptive threshold is used to select multiple seed wavelets,and finally the end waveform is predicted and expanded according to the adaptive filter method.The proposed method is used to analyze the non-stationary nonlinear simulation signal and experimental signal,and it is compared with the mirror extension and RBF extension methods.The orthogonality index and similarity index of the EMD results of the extended signal after the proposed method are better than those of the other methods.The results show that the proposed method can better constrain the end effect,and has certain validity,accuracy and stability in solving the end effect problem.展开更多
Screening similar historical fault-free candidate data would greatly affect the effectiveness of fault detection results based on principal component analysis(PCA).In order to find out the candidate data,this study co...Screening similar historical fault-free candidate data would greatly affect the effectiveness of fault detection results based on principal component analysis(PCA).In order to find out the candidate data,this study compares unweighted and weighted similarity factors(SFs),which measure the similarity of the principal component subspace corresponding to the first k main components of two datasets.The fault detection employs the principal component subspace corresponding to the current measured data and the historical fault-free data.From the historical fault-free database,the load parameters are employed to locate the candidate data similar to the current operating data.Fault detection method for air conditioning systems is based on principal component.The results show that the weighted principal component SF can improve the effects of the fault-free detection and the fault detection.Compared with the unweighted SF,the average fault-free detection rate of the weighted SF is 17.33%higher than that of the unweighted,and the average fault detection rate is 7.51%higher than unweighted.展开更多
In this paper we introduced Tanimoto based similarity measure for host-based intrusions using binary feature set for training and classification. The k-nearest neighbor (kNN) classifier has been utilized to classify a...In this paper we introduced Tanimoto based similarity measure for host-based intrusions using binary feature set for training and classification. The k-nearest neighbor (kNN) classifier has been utilized to classify a given process as either normal or attack. The experimentation is conducted on DARPA-1998 database for intrusion detection and compared with other existing techniques. The introduced similarity measure shows promising results by achieving less false positive rate at 100% detection rate.展开更多
Considering the deviation in content of community detection resulting from the tow accuracy of resource relevance, an algorithm based on the topology of sites and the similarity between their topics is proposed. With ...Considering the deviation in content of community detection resulting from the tow accuracy of resource relevance, an algorithm based on the topology of sites and the similarity between their topics is proposed. With topic content factors fully considered, this algorithm can search for topically similar site clusters on the premise of inter-site topology. The experimental results show that the algorithm can generate a more accurate result of detection in the real network.展开更多
Isomorphism detection is fundamental to the synthesis and innovative design of kinematic chains(KCs).The detection can be performed accurately by using the similarity of KCs.However,there are very few works on isomorp...Isomorphism detection is fundamental to the synthesis and innovative design of kinematic chains(KCs).The detection can be performed accurately by using the similarity of KCs.However,there are very few works on isomorphism detection based on the properties of similar vertices.In this paper,an ameliorated multi-order adjacent vertex assignment sequence(AMAVS)method is proposed to seek out similar vertices and identify the isomorphism of the planar KCs.First,the specific definition of AMAVS is described.Through the calculation of the AMAVS,the adjacent vertex value sequence reflecting the uniqueness of the topology features is established.Based on the value sequence,all possible similar vertices,corresponding relations,and isomorphism discrimination can be realized.By checking the topological graph of KCs with a different number of links,the effectiveness and efficiency of the proposed method are verified.Finally,the method is employed to implement the similar vertices and isomorphism detection of all the 9-link 2-D0F(degree of freedom)planar KCs.展开更多
On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both ...On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.展开更多
A phishing detection system, which comprises client-side filtering plug-in, analysis center and protected sites, is proposed. An image-based similarity detection algorithm is conceived to calculate the similarity of t...A phishing detection system, which comprises client-side filtering plug-in, analysis center and protected sites, is proposed. An image-based similarity detection algorithm is conceived to calculate the similarity of two web pages. The web pages are first converted into images, and then divided into sub-images with iterated dividing and shrinking. After that, the attributes of sub-images including color histograms, gray histograms and size parameters are computed to construct the attributed relational graph(ARG)of each page. In order to match two ARGs, the inner earth mover's distances(EMD)between every two nodes coming from each ARG respectively are first computed, and then the similarity of web pages by the outer EMD between two ARGs is worked out to detect phishing web pages. The experimental results show that the proposed architecture and algorithm has good robustness along with scalability, and can effectively detect phishing.展开更多
A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similar...A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similarity, which enhances the diversity of initial individuals while retaining an acceptable level of accuracy, and improves the efficiency of optimal solution search. Individual crossover is based on the quality of individuals' genes; all nodes unassigned to any community are grouped into a new community, while ambiguously placed nodes are assigned to the community to which most of their neighbors belong. Individual mutation, which splits a gene into two new genes or randomly fuses it into other genes, is non-uniform. The simplicity and effectiveness of the algorithm are revealed in experimental tests using artificial random networks and real networks. The accuracy of the algorithm is superior to that of some classic algorithms, and is comparable to that of some recent high-precision algorithms.展开更多
In this paper, we propose an analogy based immune recognition method that focuses on the implement of the clone selection process and the negative selection process by means of analogy similarity. This method is appli...In this paper, we propose an analogy based immune recognition method that focuses on the implement of the clone selection process and the negative selection process by means of analogy similarity. This method is applied in an IDS (Intrusion Detection System) following several steps. Firstly, the initial abnormal behaviours sample set is optimized through the combining of the AIS (Artificial Immune System) and the genetic algorithm. Then, the abnormity probability algorithm is raised considering the two sides of abnormality and normality. Finally, an intrusion detection system model is established based on the above algorithms and models.展开更多
Modified refractivity (M) profile is an important parameter to describe the atmospheric refraction environment,as well as a key factor in uniquely evaluating electromagnetic propagation effects.In order to improve the...Modified refractivity (M) profile is an important parameter to describe the atmospheric refraction environment,as well as a key factor in uniquely evaluating electromagnetic propagation effects.In order to improve the model-derived M profile in stable (especially very stable) conditions,three nonlinear similarity functions,namely BH91,CB05,SHEBA07,are introduced in this paper to improve the original Babin_V25 model,and the performances of these modified models are verified based on the hydrometeorological observations from tower platforms,which are finally compared with the original Babin_V25 model and Local_HYQ92 model.Results show that introducing nonlinear similarity functions can significantly improve the model-derived M profile;especially,the newly developed SHEBA07 functions manage to reduce the predicted root mean square (rms) differences of M and M slope (for both 0-5m and 5-40m) by 64.5%,16.6%,and 60.4%,respectively in stable conditions.Unfortunately,this improved method reacts little on the evaporation duct height;in contrast,Local_HYQ92 model is capable of reducing the predicted rms differences of M,M slope (for both 0-5m and 5-40m),and evaporation duct height by 76.7%,40.2%,83.7%,and 58.0% respectively.Finally,a new recommendation is made to apply Local_HYQ92 and Babin_SHEBA07 in very stable conditions considering that M slope is more important than evaporation duct height and absolute M value in uniquely determining electromagnetic propagation effects.展开更多
Networks are used to represent interactions in a wide variety of fields, like biology, sociology, chemistry, and more. They have a great deal of salient information contained in their structures, which have a variety ...Networks are used to represent interactions in a wide variety of fields, like biology, sociology, chemistry, and more. They have a great deal of salient information contained in their structures, which have a variety of applications. One of the important topics of network analysis is finding influential nodes. These nodes are of two kinds —leader nodes and bridge nodes. In this study, we propose an algorithm to find strong leaders in a network based on a revision of neighborhood similarity. This leadership detection is combined with a neighborhood intersection clustering algorithm to produce high quality communities for various networks. We also delve into the structure of a new network, the Houghton College Twitter network, and examine the discovered leaders and their respective followers in more depth than which is frequently attempted for a network of its size. The results of the observations on this and other networks demonstrate that the community partitions found by this algorithm are very similar to those of ground truth communities.展开更多
Similarity measure construction has been proposed as fault detection of flight test method in order to obtain the primary control surface stuck and the combination stuck of primary control.Similarity measures were obt...Similarity measure construction has been proposed as fault detection of flight test method in order to obtain the primary control surface stuck and the combination stuck of primary control.Similarity measures were obtained through analyzing the certainty and uncertainty of fuzzy membership functions,which were designed based on well-known Hamming distance.It was applied to the fault detection of primary control surface stuck of uninhabited aerial vehicle(UAV).At post-failure control surface,if the UAV is controllable and trimmable using other control surfaces,the UAV is able to fly or return to the safety region through reconfiguration of flight control system.To detect the fault,similarity measure computations were carried out.This result could be applicable with the real-time parameter estimation method.By monitoring the value of coefficients due to the control surface deviation,it becomes aware that the control surface fault occurs or not.The control surface stuck position and value were separated by comparing the trim value with the reference value.This is the advantage of increasing in reliability without adding sensors or with additional low cost.展开更多
Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle t...Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle that the number of network traffic can affect the degree ofself-similar traffic, the paper investigates the variety of self-similarity resulted fromunconventional network traffic. A network traffic model based on normal behaviors of user isproposed and the Hursl parameter of this model can be calculated. By comparing the Hurst parameterof normal traffic and the self-similar parameter, we ean judge whether the network is normal or notand alarm in time.展开更多
基金the National Natural Science Foundation of China(No.62302540)with author F.F.S.For more information,please visit their website at https://www.nsfc.gov.cn/.Additionally,it is also funded by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020)+1 种基金where F.F.S is an author.Further details can be found at http://xt.hnkjt.gov.cn/data/pingtai/.The research is also supported by the Natural Science Foundation of Henan Province Youth Science Fund Project(No.232300420422)for more information,you can visit https://kjt.henan.gov.cn/2022/09-02/2599082.html.Lastly,it receives funding from the Natural Science Foundation of Zhongyuan University of Technology(No.K2023QN018),where F.F.S is an author.You can find more information at https://www.zut.edu.cn/.
文摘As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocreate a misleading perception among users. While early research primarily focused on text-based features forfake news detection mechanisms, there has been relatively limited exploration of learning shared representationsin multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal modelfor detecting fake news, which relies on similarity reasoning and adversarial networks. The model employsBidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural Network (Text-CNN) for extracting textual features while utilizing the pre-trained Visual Geometry Group 19-layer (VGG-19) toextract visual features. Subsequently, the model establishes similarity representations between the textual featuresextracted by Text-CNN and visual features through similarity learning and reasoning. Finally, these features arefused to enhance the accuracy of fake news detection, and adversarial networks have been employed to investigatethe relationship between fake news and events. This paper validates the proposed model using publicly availablemultimodal datasets from Weibo and Twitter. Experimental results demonstrate that our proposed approachachieves superior performance on Twitter, with an accuracy of 86%, surpassing traditional unimodalmodalmodelsand existing multimodal models. In contrast, the overall better performance of our model on the Weibo datasetsurpasses the benchmark models across multiple metrics. The application of similarity reasoning and adversarialnetworks in multimodal fake news detection significantly enhances detection effectiveness in this paper. However,current research is limited to the fusion of only text and image modalities. Future research directions should aimto further integrate features fromadditionalmodalities to comprehensively represent themultifaceted informationof fake news.
文摘An internal defect meter is an instrument to detect the internal inclusion defects of cold-rolled strip steel.The detection accuracy of the equipment can be evaluated based on the similarity of the multiple detection data obtained for the same steel coil.Based on the cosine similarity model and eigenvalue matrix model,a comprehensive evaluation method to calculate the weighted average of similarity is proposed.Results show that the new method is consistent with and can even replace artificial evaluation to realize the automatic evaluation of strip defect detection results.
基金Supported by the National Natural Science Foundation of China(61273160,61403418)the Natural Science Foundation of Shandong Province(ZR2011FM014)+1 种基金the Fundamental Research Funds for the Central Universities(10CX04046A)the Doctoral Fund of Shandong Province(BS2012ZZ011)
文摘Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode chemical process effectively, this paper presents a novel fault detection method based on local neighborhood similarity analysis(LNSA). In the proposed method, prior process knowledge is not required and only the multimode normal operation data are used to construct a reference dataset. For online monitoring of process state, LNSA applies moving window technique to obtain a current snapshot data window. Then neighborhood searching technique is used to acquire the corresponding local neighborhood data window from the reference dataset. Similarity analysis between snapshot and neighborhood data windows is performed, which includes the calculation of principal component analysis(PCA) similarity factor and distance similarity factor. The PCA similarity factor is to capture the change of data direction while the distance similarity factor is used for monitoring the shift of data center position. Based on these similarity factors, two monitoring statistics are built for multimode process fault detection. Finally a simulated continuous stirred tank system is used to demonstrate the effectiveness of the proposed method. The simulation results show that LNSA can detect multimode process changes effectively and performs better than traditional fault detection methods.
基金supported by National Natural Science Foundation of China(41471387,41631072)
文摘In this paper, a video fire detection method is proposed, which demonstrated good performance in indoor environment. Three main novel ideas have been introduced. Firstly, a flame color model in RGB and HIS color space is used to extract pre-detected regions instead of traditional motion differential method, as it’s more suitable for fire detection in indoor environment. Secondly, according to the flicker characteristic of the flame, similarity and two main values of centroid motion are proposed. At the same time, a simple but effective method for tracking the same regions in consecutive frames is established. Thirdly,a multi-expert system consisting of color component dispersion,similarity and centroid motion is established to identify flames.The proposed method has been tested on a very large dataset of fire videos acquired both in real indoor environment tests and from the Internet. The experimental results show that the proposed approach achieved a balance between the false positive rate and the false negative rate, and demonstrated a better performance in terms of overall accuracy and F standard with respect to other similar fire detection methods in indoor environment.
基金The National Natural Science Foundation of China under contract No.61471024the National Marine Technology Program for Public Welfare under contract No.201505002。
文摘A new paradigm for ship detection in polarimetric synthetic aperture radar(Pol-SAR)image is presented.We firstly utilize the scattering similarity parameters to investigate the differences of scattering mechanism between ships and sea clutter.Based on these differences,we propose a novel ship detection metric,denoted as the scattering similarity based metric(SSM),to conduct ship detection task.The distribution model of SSM metric is investigated and modeled by kernel density estimation(KDE).Based on the statistical distribution,an adaptive constant false alarm rate(CFAR)detection scheme is implemented.We compare the proposed SSM with two classic polarimetric metrics,i.e.,the polarimetric cross-entropy(PCE)and the reflection symmetry metric(RSM).The experimental results conducted on C-band RADARSAT-2 Pol-SAR data demonstrate the feasibility and advantage of the proposed SSM metric both in sea clutter modeling and in ship detection.
基金Project(60873081) supported by the National Natural Science Foundation of ChinaProject(NCET-10-0787) supported by the Program for New Century Excellent Talents in University, ChinaProject(11JJ1012) supported by the Natural Science Foundation of Hunan Province, China
文摘To quickly find documents with high similarity in existing documentation sets, fingerprint group merging retrieval algorithm is proposed to address both sides of the problem:a given similarity threshold could not be too low and fewer fingerprints could lead to low accuracy. It can be proved that the efficiency of similarity retrieval is improved by fingerprint group merging retrieval algorithm with lower similarity threshold. Experiments with the lower similarity threshold r=0.7 and high fingerprint bits k=400 demonstrate that the CPU time-consuming cost decreases from 1 921 s to 273 s. Theoretical analysis and experimental results verify the effectiveness of this method.
基金The National Natural Science Foundation of China(No.51675100).
文摘Aimed at the problem of the end effect when using empirical mode decomposition(EMD),a method for constraining the end effect of EMD is proposed based on sequential similarity detection and adaptive filter.The method divides the signal into many wavelets,and it changes the initial wavelet length to select the best initial wavelet that has the minimum error and maximum number of matching seed wavelets,and the wavelet slopes are used for pre-matching and secondary matching to speed up the matching speed.Then,folded self-adaptive threshold is used to select multiple seed wavelets,and finally the end waveform is predicted and expanded according to the adaptive filter method.The proposed method is used to analyze the non-stationary nonlinear simulation signal and experimental signal,and it is compared with the mirror extension and RBF extension methods.The orthogonality index and similarity index of the EMD results of the extended signal after the proposed method are better than those of the other methods.The results show that the proposed method can better constrain the end effect,and has certain validity,accuracy and stability in solving the end effect problem.
基金Research Project of China Ship Development and Design Center。
文摘Screening similar historical fault-free candidate data would greatly affect the effectiveness of fault detection results based on principal component analysis(PCA).In order to find out the candidate data,this study compares unweighted and weighted similarity factors(SFs),which measure the similarity of the principal component subspace corresponding to the first k main components of two datasets.The fault detection employs the principal component subspace corresponding to the current measured data and the historical fault-free data.From the historical fault-free database,the load parameters are employed to locate the candidate data similar to the current operating data.Fault detection method for air conditioning systems is based on principal component.The results show that the weighted principal component SF can improve the effects of the fault-free detection and the fault detection.Compared with the unweighted SF,the average fault-free detection rate of the weighted SF is 17.33%higher than that of the unweighted,and the average fault detection rate is 7.51%higher than unweighted.
文摘In this paper we introduced Tanimoto based similarity measure for host-based intrusions using binary feature set for training and classification. The k-nearest neighbor (kNN) classifier has been utilized to classify a given process as either normal or attack. The experimentation is conducted on DARPA-1998 database for intrusion detection and compared with other existing techniques. The introduced similarity measure shows promising results by achieving less false positive rate at 100% detection rate.
基金Supported by the National Science and Technology Support Program of China(No.2012BAH45B01)the National Natural Science Foundation of China(No.61100189,61370215,61370211,61402137)the National“242”Project of China(No.2016A104)
文摘Considering the deviation in content of community detection resulting from the tow accuracy of resource relevance, an algorithm based on the topology of sites and the similarity between their topics is proposed. With topic content factors fully considered, this algorithm can search for topically similar site clusters on the premise of inter-site topology. The experimental results show that the algorithm can generate a more accurate result of detection in the real network.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675488,51975534)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY19E050021)。
文摘Isomorphism detection is fundamental to the synthesis and innovative design of kinematic chains(KCs).The detection can be performed accurately by using the similarity of KCs.However,there are very few works on isomorphism detection based on the properties of similar vertices.In this paper,an ameliorated multi-order adjacent vertex assignment sequence(AMAVS)method is proposed to seek out similar vertices and identify the isomorphism of the planar KCs.First,the specific definition of AMAVS is described.Through the calculation of the AMAVS,the adjacent vertex value sequence reflecting the uniqueness of the topology features is established.Based on the value sequence,all possible similar vertices,corresponding relations,and isomorphism discrimination can be realized.By checking the topological graph of KCs with a different number of links,the effectiveness and efficiency of the proposed method are verified.Finally,the method is employed to implement the similar vertices and isomorphism detection of all the 9-link 2-D0F(degree of freedom)planar KCs.
文摘On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.
基金The National Basic Research Program of China (973Program)(2010CB328104,2009CB320501)the National Natural Science Foundation of China (No.60773103,90912002)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(No.200802860031)Key Laboratory of Computer Network and Information Integration of Ministry of Education of China (No.93K-9)
文摘A phishing detection system, which comprises client-side filtering plug-in, analysis center and protected sites, is proposed. An image-based similarity detection algorithm is conceived to calculate the similarity of two web pages. The web pages are first converted into images, and then divided into sub-images with iterated dividing and shrinking. After that, the attributes of sub-images including color histograms, gray histograms and size parameters are computed to construct the attributed relational graph(ARG)of each page. In order to match two ARGs, the inner earth mover's distances(EMD)between every two nodes coming from each ARG respectively are first computed, and then the similarity of web pages by the outer EMD between two ARGs is worked out to detect phishing web pages. The experimental results show that the proposed architecture and algorithm has good robustness along with scalability, and can effectively detect phishing.
文摘A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similarity, which enhances the diversity of initial individuals while retaining an acceptable level of accuracy, and improves the efficiency of optimal solution search. Individual crossover is based on the quality of individuals' genes; all nodes unassigned to any community are grouped into a new community, while ambiguously placed nodes are assigned to the community to which most of their neighbors belong. Individual mutation, which splits a gene into two new genes or randomly fuses it into other genes, is non-uniform. The simplicity and effectiveness of the algorithm are revealed in experimental tests using artificial random networks and real networks. The accuracy of the algorithm is superior to that of some classic algorithms, and is comparable to that of some recent high-precision algorithms.
基金Supported by the National Natural Science Foundation ofChina (60563002) Scientific Research Programof the Higher EducationInstitution of Xinjiang (XJEDU2004I03)
文摘In this paper, we propose an analogy based immune recognition method that focuses on the implement of the clone selection process and the negative selection process by means of analogy similarity. This method is applied in an IDS (Intrusion Detection System) following several steps. Firstly, the initial abnormal behaviours sample set is optimized through the combining of the AIS (Artificial Immune System) and the genetic algorithm. Then, the abnormity probability algorithm is raised considering the two sides of abnormality and normality. Finally, an intrusion detection system model is established based on the above algorithms and models.
基金Key project of the National Natural Science Foundation of China(4083095841005029)the "973" National Basis Research and Development Program of China (2009CB421502)
文摘Modified refractivity (M) profile is an important parameter to describe the atmospheric refraction environment,as well as a key factor in uniquely evaluating electromagnetic propagation effects.In order to improve the model-derived M profile in stable (especially very stable) conditions,three nonlinear similarity functions,namely BH91,CB05,SHEBA07,are introduced in this paper to improve the original Babin_V25 model,and the performances of these modified models are verified based on the hydrometeorological observations from tower platforms,which are finally compared with the original Babin_V25 model and Local_HYQ92 model.Results show that introducing nonlinear similarity functions can significantly improve the model-derived M profile;especially,the newly developed SHEBA07 functions manage to reduce the predicted root mean square (rms) differences of M and M slope (for both 0-5m and 5-40m) by 64.5%,16.6%,and 60.4%,respectively in stable conditions.Unfortunately,this improved method reacts little on the evaporation duct height;in contrast,Local_HYQ92 model is capable of reducing the predicted rms differences of M,M slope (for both 0-5m and 5-40m),and evaporation duct height by 76.7%,40.2%,83.7%,and 58.0% respectively.Finally,a new recommendation is made to apply Local_HYQ92 and Babin_SHEBA07 in very stable conditions considering that M slope is more important than evaporation duct height and absolute M value in uniquely determining electromagnetic propagation effects.
文摘Networks are used to represent interactions in a wide variety of fields, like biology, sociology, chemistry, and more. They have a great deal of salient information contained in their structures, which have a variety of applications. One of the important topics of network analysis is finding influential nodes. These nodes are of two kinds —leader nodes and bridge nodes. In this study, we propose an algorithm to find strong leaders in a network based on a revision of neighborhood similarity. This leadership detection is combined with a neighborhood intersection clustering algorithm to produce high quality communities for various networks. We also delve into the structure of a new network, the Houghton College Twitter network, and examine the discovered leaders and their respective followers in more depth than which is frequently attempted for a network of its size. The results of the observations on this and other networks demonstrate that the community partitions found by this algorithm are very similar to those of ground truth communities.
基金Project(20110018394) supported by Key Research Institute Program through the National Research Foundation (NRF) of Korea
文摘Similarity measure construction has been proposed as fault detection of flight test method in order to obtain the primary control surface stuck and the combination stuck of primary control.Similarity measures were obtained through analyzing the certainty and uncertainty of fuzzy membership functions,which were designed based on well-known Hamming distance.It was applied to the fault detection of primary control surface stuck of uninhabited aerial vehicle(UAV).At post-failure control surface,if the UAV is controllable and trimmable using other control surfaces,the UAV is able to fly or return to the safety region through reconfiguration of flight control system.To detect the fault,similarity measure computations were carried out.This result could be applicable with the real-time parameter estimation method.By monitoring the value of coefficients due to the control surface deviation,it becomes aware that the control surface fault occurs or not.The control surface stuck position and value were separated by comparing the trim value with the reference value.This is the advantage of increasing in reliability without adding sensors or with additional low cost.
文摘Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle that the number of network traffic can affect the degree ofself-similar traffic, the paper investigates the variety of self-similarity resulted fromunconventional network traffic. A network traffic model based on normal behaviors of user isproposed and the Hursl parameter of this model can be calculated. By comparing the Hurst parameterof normal traffic and the self-similar parameter, we ean judge whether the network is normal or notand alarm in time.