Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related t...Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.展开更多
Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2...Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.展开更多
Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrate...Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.展开更多
BACKGROUND Histone Lysine Specific Demethylase 1(LSD1)is the first histone demethylase to be discovered,which regulates various biological functions by making lysine of histone H3K4,H3K9 and non-histone substrates dem...BACKGROUND Histone Lysine Specific Demethylase 1(LSD1)is the first histone demethylase to be discovered,which regulates various biological functions by making lysine of histone H3K4,H3K9 and non-histone substrates demethylated.Abnormal regulation of LSD1 is closely related to the occurrence and development of gastric cancer.The change of LSD1 expression level plays an important role in the proliferation and metastasis of gastric cancer cells.The study of its function and mechanism may provide a theoretical basis for early diagnosis and targeted therapy of gastric cancer.AIM To investigate the effect of downregulation of lysine-specific demethylase 1(LSD1)expression on proliferation and invasion of gastric cancer cells and the possible regulatory mechanisms of the VEGF-C/PI3K/AKT signaling pathway.METHODS The LSD1-specific short hairpin RNA(shRNA)interference plasmid was transiently transfected,and expression of LSD1 was downregulated.The cell proliferation ability of LSD1 was observed by CCK-8 assay after downregulating expression of LSD1.Transwell invasion assay was used to observe the change of cell invasion ability after downregulating expression of LSD1.Expression of phosphorylated phosphoinositide 3-kinase(p-PI3K),PI3K,p-AKT,AKT,vascular endothelial growth factor receptor(VEGFR)-3,matrix metalloproteinase(MMP)-2 and MMP-9 in each group was detected by Western blotting.RESULTS The cell proliferation ability of transiently transfected LSD1-shRNA interference plasmid group was significantly lower than that of the control group(P<0.05).Transwell invasion assay showed that the number of cells across the membrane of the LSD1-shRNA transfection group(238.451±5.216)was significantly lower than that of the control group(49.268±6.984)(P<0.01).Western blotting showed that expression level of VEGF-C,p-PI3K,PI3K,p-AKT,AKT,VEGFR-3,MMP-2 and MMP-9 in the LSD1-shRNA group was significantly lower than that in the control group(P<0.05).CONCLUSION Downregulation of LSD1 expression inhibits metastatic potential of gastric cancer cells,and VEGF-C-mediated activation of PI3K/AKT signaling pathway,which may be an important mechanism for inhibiting lymph node metastasis in gastric cancer cells.展开更多
We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effec...We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effects on the IGF-1/PI3K/Akt/mTOR pathway in benign prostatic hyperplasia(BPH).Metabolites in ADLE were analyzed using UHPLC-qTOF-MS and HPLC.IQ was orally administered(1 or 10 mg/kg)to a testosterone propionate-induced BPH rat model,and its effects on the prostate weight were evaluated.The effect of IQ on androgen receptor(AR)signaling was analyzed in LNCaP cells.Whether IGF-1 and IQ affect the IGF-1/PI3K/Akt/mTOR pathway in BPH-1 cells was also examined.The metabolites in ADLE were identified and quantified,which confirmed that ADLE contained abundant IQ(20.88 mg/g).IQ significantly reduced the prostate size in a concentration-dependent manner in a BPH rat model,and significantly decreased the expression of AR signaling factors in the rat prostate tissue and LNCaP cells in a concentration-dependent manner.IQ also inhibited the PI3K/AKT/mTOR pathway activated by IGF-1 treatment in BPH-1 cells.In BPH-1 cells,IQ led to G0/G1 arrest and suppressed the expression of proliferation factors while inducing apoptosis.Thus,IQ shows potential for use as a pharmaceutical and nutraceutical for BPH.展开更多
Background:The purpose of the study was to investigatethe active ingredients and potential biochemicalmechanisms of Simiao Wan(SMW)in obesity-associated insulin resistance.Methods:An integrated network pharmacology me...Background:The purpose of the study was to investigatethe active ingredients and potential biochemicalmechanisms of Simiao Wan(SMW)in obesity-associated insulin resistance.Methods:An integrated network pharmacology method to screen the active compoundsand candidate targets,construct the protein-protein-interaction network,and ingredients-targets-pathways network was constructed for topological analysis to identify core targets and main ingredients.To find the possible signaling pathways,enrichment analysis was performed.Further,a model of insulin resistance in HL-7702 cells was established to verify the impact of SMW and the regulatory processes.Results:An overall of 63 active components and 151 candidate targets were obtained,in which flavonoids were the main ingredients.Enrichment analysis indicated that the PI3K-Akt signaling pathway was the potential pathway regulated by SMW in obesity-associated insulin resistance treatment.The result showed that SMW could significantly ameliorate insulin sensitivity,increase glucose synthesis and glucose utilization and reduce intracellular lipids accumulation in hepatocytes.Also,SMW inhibited diacylglycerols accumulation-induced PKCεactivity and decreased its translocation to the membrane.Conclusion:SMW ameliorated obesity-associated insulin resistance through PKCε/IRS-1/PI3K/Akt signaling axis in hepatocytes,providing a new strategy for metabolic disease treatment.展开更多
Baicalin is a natural active ingredient isolated from Scutellariae Radix that can cross the blood-brain barrier and exhibits neuroprotective effects on multiple central nervous system diseases.However,the mechanism be...Baicalin is a natural active ingredient isolated from Scutellariae Radix that can cross the blood-brain barrier and exhibits neuroprotective effects on multiple central nervous system diseases.However,the mechanism behind the neuroprotective effects remains unclear.In this study,rat models of spinal cord injury were established using a modified Allen's impact method and then treated with intraperitoneal injection of Baicalin.The results revealed that Baicalin greatly increased the Basso,Beattie,Bresnahan Locomotor Rating Scale score,reduced blood-spinal cord barrier permeability,decreased the expression of Bax,Caspase-3,and nuclear factorκB,increased the expression of Bcl-2,and reduced neuronal apoptosis and pathological spinal cord injury.SH-SY5 Y cell models of excitotoxicity were established by application of 10 m M glutamate for 12 hours and then treated with 40μM Baicalin for 48 hours to investigate the mechanism of action of Baicalin.The results showed that Baicalin reversed tight junction protein expression tendencies(occludin and ZO-1)and apoptosis-related protein expression(Bax,Bcl-2,Caspase-3,and nuclear factor-κB),and also led to up-regulation of PI3 K and Akt phosphorylation.These effects on Bax,Bcl-2,and Caspase-3 were blocked by pretreatment with the PI3 K inhibitor LY294002.These findings suggest that Baicalin can inhibit bloodspinal cord barrier permeability after spinal cord injury and reduce neuronal apoptosis,possibly by activating the PI3 K/Akt signaling pathway.This study was approved by Animal Ethics Committee of Xi'an Jiaotong University on March 6,2014.展开更多
AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eE...AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eEF1A2 levels were detected in 62 HCC tissue samples and paired pericarcinomatous specimens, and the human HCC cell lines SK-HEP-1, HepG2 and BEF-7402, by real-time PCR and immunohistochemistry. Experimental groups included eEF1A2 silencing in BEL-7402 cells with lentivirus eEF1A2-shRNA (KD group) and eEF1A2 overexpression in SK-HEP-1 cells with eEF1A2 plasmid (OE group). Non-transfected cells (control group) and lentivirus-based empty vector transfected cells (NC group) were considered control groups. Cell proliferation (MTT and colony formation assays), apoptosis (Annexin V-APC assay), cell cycle (DNA ploidy assay), and migration and invasion (Transwell assays) were assessed. Protein levels of PI3K/Akt/NF-κB signaling effectors were evaluated by Western blot.RESULTS: eEF1A2 mRNA and protein levels were significantly higher in HCC cancer tissue samples than in paired pericarcinomatous and normal specimens. SK-HEP-1 cells showed lower eEF1A2 mRNA levels; HepG2 and BEL-7402 cells showed higher eEF1A2 mRNA levels, with BEL-7402 cells displaying the highest amount. Efficient eEF1A2 silencing resulted in reduced cell proliferation, migration and invasion, increased apoptosis, and induced cell cycle arrest. The PI3K/Akt/NF-κB signaling pathway was notably inhibited. Inversely, eEF1A2 overexpression resulted in promoted cell proliferation, migration and invasion.CONCLUSION: eEF1A2, highly expressed in HCC, is a potential oncogene. Its silencing significantly decreases HCC tumorigenesis, likely by inhibiting PI3K/Akt/NF-κB signaling.展开更多
AIM: To determine whether the PI3K/AKT/mTOR pathway is activated in proliferative vitreoretinopathy (PVR) in homo-sapiens. METHODS: The retina of controls and patients with PVR were collected and their levels of PI3K,...AIM: To determine whether the PI3K/AKT/mTOR pathway is activated in proliferative vitreoretinopathy (PVR) in homo-sapiens. METHODS: The retina of controls and patients with PVR were collected and their levels of PI3K, phospho-AKT, phospho-mTOR, phospho-p70S6k and phospho-4EBP-1 were determined by Western blot. The cultured human retinal pigment epithelial cell line D407 was treated with a specific mTOR inhibitor, rapamycin (RAPA) or a PI3K inhibitor, LY294002, of various concentrations and durations. Cell morphology was observed by phase contrast microscopy and the proliferation and apoptosis of treated cells were determined by MTT assay and flow cytometry. RESULTS: Levels of PI3K, phospho-AKT, phospho-mTOR, phospho-P70S6K and phospho-4EBP1 was increased in the retina in PVR (P <0.05). In D407 cells, both RAPA and LY294002 significantly inhibited cell proliferation and cell cycle progression, and promoted apoptosis (P <0.05); morphologically, the cells became smaller. Both RAPA and LY294002 reduced levels of phospho-AKT, phospho-mTOR, phospho-p70S6k and phospho-4EBP1 expression (P <0.05). RAPA, but not LY294002, had no significant effect on PI3K expression. CONCLUSION: PI3K/AKT/mTOR signaling pathway is highly activated in the retinal pigment epithelial cells of PVR. The inhibitors of PI3K/AKT/mTOR signaling pathway, RAPA and LY294002, could inhibited the PI3K/AKT/mTOR signaling pathway by reducing the levels of phosphorylation of mTOR pathway components.展开更多
BACKGROUND Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments.Scoparone,a traditional ...BACKGROUND Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments.Scoparone,a traditional Chinese medicine monomer with a wide range of pharmacological properties,has attracted considerable attention for its antitumor activity.AIM To explore the potential antitumor effect of scoparone on pancreatic cancer and the possible molecular mechanism of action.METHODS The target genes of scoparone were determined using both the bioinformatics and multiplatform analyses.The effect of scoparone on pancreatic cancer cell proliferation,migration,invasion,cell cycle,and apoptosis was detected in vitro.The expression of hub genes was tested using quantitative reverse transcription polymerase chain reaction(qRT-PCR),and the molecular mechanism was analyzed using Western blot.The in vivo effect of scoparone on pancreatic cancer cell proliferation was detected using a xenograft tumor model in nude mice as well as immunohistochemistry.RESULTS The hub genes involved in the suppression of pancreatic cancer by scoparone were obtained by network bioinformatics analyses using publicly available databases and platforms,including SwissTargetPrediction,STITCH,GeneCards,CTD,STRING,WebGestalt,Cytoscape,and Gepia;AKT1 was confirmed using qRT-PCR to be the hub gene.Cell Counting Kit-8 assay revealed that the viability of Capan-2 and SW1990 cells was significantly reduced by scoparone treatment exhibiting IC50 values of 225.2μmol/L and 209.1μmol/L,respectively.Wound healing and transwell assays showed that scoparone inhibited the migration and invasion of pancreatic cancer cells.Additionally,flow cytometry confirmed that scoparone caused cell cycle arrest and induced apoptosis.Scoparone also increased the expression levels of Bax and cleaved caspase-3,decreased the levels of MMP9 and Bcl-2,and suppressed the phosphorylation of Akt without affecting total PI3K and Akt.Moreover,compared with the control group,xenograft tumors,in the 200μmol/L scoparone treatment group,were smaller in volume and lighter in weight,and the percentages of Ki65-and PCNA-positive cells were decreased.CONCLUSION Our findings indicate that scoparone inhibits pancreatic cancer cell proliferation in vitro and in vivo,inhibits migration and invasion,and induces cycle arrest and apoptosis in vitro through the PI3K/Akt signaling pathway.展开更多
Objective:Myeloma bone disease(MBD)is the most common complication of multiple myeloma(MM).Our previous study showed that the serum levels of C3/C4 in MM patients were significantly positively correlated with the seve...Objective:Myeloma bone disease(MBD)is the most common complication of multiple myeloma(MM).Our previous study showed that the serum levels of C3/C4 in MM patients were significantly positively correlated with the severity of bone disease.However,the mechanism of C3 a/C4 a in osteoclasts MM patients remains unclear.Methods:The formation and function of osteoclasts were analyzed after adding C3 a/C4 a in vitro.RNA-seq analysis was used to screen the potential pathways affecting osteoclasts,and the results were verified by Western blot,q RT-PCR,and pathway inhibitors.Results:The osteoclast area per view induced by 1μg/m L(mean±SD:50.828±12.984%)and 10μg/m L(53.663±12.685%)of C3 a was significantly increased compared to the control group(0μg/m L)(34.635±8.916%)(P<0.001 and P<0.001,respectively).The relative m RNA expressions of genes,OSCAR/TRAP/RANKL/cathepsin K,induced by 1μg/m L(median:5.041,3.726,1.638,and 4.752,respectively)and 10μg/m L(median:5.140,3.702,2.250,and 5.172,respectively)of C3 a was significantly increased compared to the control group(median:3.137,2.004,0.573,and 2.257,respectively)(1μg/m L P=0.001,P=0.003,P<0.001,and P=0.008,respectively;10μg/m L:P<0.001,P=0.019,P<0.001,and P=0.002,respectively).The absorption areas of the osteoclast resorption pits per view induced by 1μg/m L(mean±SD:51.464±11.983%)and 10μg/m L(50.219±12.067%)of C3 a was also significantly increased(33.845±8.331%)(P<0.001 and P<0.001,respectively)compared to the control.There was no difference between the C4 a and control groups.RNA-seq analysis showed that C3 a promoted the proliferation of osteoclasts using the phosphoinositide 3-kinase(PI3 K)signaling pathway.The relative expressions of PIK3 CA/phosphoinositide dependent kinase-1(PDK1)/serum and glucocorticoid inducible protein kinases(SGK3)genes and PI3 K/PDK1/p-SGK3 protein in the C3 a group were significantly higher than in the control group.The activation role of C3 a in osteoclasts of MM patients was reduced by the SGK inhibitor(EMD638683).Conclusions:C3 a activated osteoclasts by regulating the PI3 K/PDK1/SGK3 pathways in MM patients,which was reduced using a SGK inhibitor.Overall,our results identified potential therapeutic targets and strategies for MBD patients。展开更多
Baicalin is a flavonoid compound extracted from Scutellaria baicalensis root.Recent evidence indicates that baicalin is neuroprotective in models of ischemic stroke.Here,we investigate the neuroprotective effect of ba...Baicalin is a flavonoid compound extracted from Scutellaria baicalensis root.Recent evidence indicates that baicalin is neuroprotective in models of ischemic stroke.Here,we investigate the neuroprotective effect of baicalin in a neonatal rat model of hypoxic-ischemic encephalopathy.Seven-day-old pups underwent left common carotid artery ligation followed by hypoxia(8% oxygen at 37°C) for 2 hours,before being injected with baicalin(120 mg/kg intraperitoneally) and examined 24 hours later.Baicalin effectively reduced cerebral infarct volume and neuronal loss,inhibited apoptosis,and upregulated the expression of p-Akt and glutamate transporter 1.Intracerebroventricular injection of the phosphoinositide 3-kinase/protein kinase B(PI3 K/Akt) inhibitor LY294002 30 minutes before injury blocked the effect of baicalin on p-Akt and glutamate transporter 1,and weakened the associated neuroprotective effect.Our findings provide the first evidence,to our knowledge that baicalin can protect neonatal rat brains against hypoxic-ischemic injury by upregulating glutamate transporter 1 via the PI3 K/Akt signaling pathway.展开更多
Objective Osteogenesis is vitally important for bone defect repair,and Zuo Gui Wan(ZGW)is a classic prescription in traditional Chinese medicine(TCM)for strengthening bones.However,the specific mechanism by which ZGW ...Objective Osteogenesis is vitally important for bone defect repair,and Zuo Gui Wan(ZGW)is a classic prescription in traditional Chinese medicine(TCM)for strengthening bones.However,the specific mechanism by which ZGW regulates osteogenesis is still unclear.The current study is based on a network pharmacology analysis to explore the potential mechanism of ZGW in promoting osteogenesis.Methods A network pharmacology analysis followed by experimental validation was applied to explore the potential mechanisms of ZGW in promoting the osteogenesis of bone marrow mesenchymal stem cells(BMSCs).Results In total,487 no-repeat targets corresponding to the bioactive components of ZGW were screened,and 175 target genes in the intersection of ZGW and osteogenesis were obtained.And 28 core target genes were then obtained from a PPI network analysis.A GO functional enrichment analysis showed that the relevant biological processes mainly involve the cellular response to chemical stress,metal ions,and lipopolysaccharide.Additionally,KEGG pathway enrichment analysis revealed that multiple signaling pathways,including the phosphatidylinositol-3-kinase/protein kinase B(PI3K/AKT)signaling pathway,were associated with ZGW-promoted osteogensis.Further experimental validation showed that ZGW could increase alkaline phosphatase(ALP)activity as well as the mRNA and protein levels of ALP,osteocalcin(OCN),and runt related transcription factor 2(Runx 2).What’s more,Western blot analysis results showed that ZGW significantly increased the protein levels of p-PI3K and p-AKT,and the increases of these protein levels significantly receded after the addition of the PI3K inhibitor LY294002.Finally,the upregulated osteogenic-related indicators were also suppressed by the addition of LY294002.Conclusion ZGW promotes the osteogenesis of BMSCs via PI3K/AKT signaling pathway.展开更多
Background:Liqi Huoxue dripping pill(LQHXDP),a traditional Chinese drug for coronary heart disease,has a protective effect on the heart of rats with myocardial ischemia-reperfusion injury(MIRI)in previous studies;howe...Background:Liqi Huoxue dripping pill(LQHXDP),a traditional Chinese drug for coronary heart disease,has a protective effect on the heart of rats with myocardial ischemia-reperfusion injury(MIRI)in previous studies;however,its mechanism of action remains unclear.The purpose of this study was to investigate the protective mechanism of LQHXDP on MIRI in rats and its relationship with the PI3K/Akt signaling pathway.Methods:In this study,Sprague-Dawley rats were pre-infused with LQHXDP(175 mg/kg/d)for 10 days.PI3K inhibitor LY294002(0.3 mg/kg)was intravenously injected 15 minutes before ischemia.The rat model of MIRI was established by ligating the left anterior descending coronary artery.Subsequently,cardiac hemodynamics,serum myocardial injury markers,inflammatory factors,myocardial infarct size,antioxidant indexes,myocardial histopathology,and phosphorylation levels of key proteins of PI3K/Akt signaling pathway were assessed in rats.Results:LQHXDP was found to improve cardiac hemodynamic indexes,reduce serum creatine kinase MB isoenzyme activity and cardiac troponin and heart-type fatty acid binding protein levels,lower serum interleukin-1 beta,interleukin-6 and tumour necrosis factorαlevels,reduce the myocardial infarct size and enhance the antioxidant capacity of myocardial tissue in MIRI rats.Pathological analysis revealed that LQHXDP attenuated the extent of myocardial injury and protected mitochondria from damage in MIRI rats.Immunoblot analysis revealed that LQHXDP increased the expression levels of p-Akt and p-GSK-3βin MIRI rat cardiomyocytes.PI3K inhibitor LY294002 could impair these effects of LQHXDP.Conclusion:LQHXDP attenuated myocardial injury,attenuated oxidative stress injury and reduced inflammatory response in MIRI rats,and its protective effects were mediated by activating of PI3K/Akt/GSK-3βsignaling pathway.展开更多
Background:To investigate the role of fibroblast growth factor 2(FGF2)in chemotherapy resistance of colon cancer.Methods:An HCT116/5-fluorouracil(5-FU)-resistant cell line was established,and FGF2 levels were detected...Background:To investigate the role of fibroblast growth factor 2(FGF2)in chemotherapy resistance of colon cancer.Methods:An HCT116/5-fluorouracil(5-FU)-resistant cell line was established,and FGF2 levels were detected in a sensitive cell group(HCT116)and a resistant cell group(HCT1116-R)using different methods.Fibroblast growth factor 2 levels in the medium were determined by enzyme-linked immunoassay.The protein expressions of FGF2,fibroblast growth factor receptor 1(FGFR1),and phospho-FGFR1 were assessed by Western blotting,and FGF2 mRNA levels were detected by quantitative real-time polymerase chain reaction.Fibroblast growth factor 2 recombinant protein was added to sensitive cells,and FGFR inhibitor AZD4547 was added to resistant cells,and the cell survival rate was determined using the cell counting kit-8 method and the protein expressions of PI3K(phosphatidylinositol 3 kinase),p-PI3K(phospho-PI3K),Akt(protein kinase B),p-Akt(phospho-Akt),mammalian target of rapamycin(mTOR),p-mTOR(phospho-mTOR),Bad(Bcl-xL/Bcl-2-associated death promoter),NF-κB(nuclear factorκB),GSK-3(glycogen synthase kinase-3),FKHR(forkhead box protein O1),and PTEN(phosphatase and tensin homolog deleted on chromosome ten)were detected by Western blotting.Results:Fibroblast growth factor 2 protein and mRNA expression levels in the HCT116-R group were significantly higher than those in the HCT116 group.Fibroblast growth factor 2 increased the survival rate of HCT116 cells;improved tolerance to 5-FU;upregulated p-PI3K,p-Akt,and p-mTOR;and downregulated Bad.The FGFR inhibitor AZD4547 decreased cell survival rate and tolerance to 5-FU;downregulated p-PI3K,p-Akt,and p-mTOR expression;and upregulated Bad.Conclusions:Fibroblast growth factor 2 promotes chemotherapy tolerance in colon cancer cells by activating the Akt/mTOR and Akt/Bad signaling pathways downstream of PI3K.展开更多
[Objectives] To explore the effect of Buyanghuanwu decoction on PI3K/AKT signaling pathway and aquaporin AQP4 in cerebral hemorrhage rats and clarify the mechanism to provide clear direction and target for cerebral he...[Objectives] To explore the effect of Buyanghuanwu decoction on PI3K/AKT signaling pathway and aquaporin AQP4 in cerebral hemorrhage rats and clarify the mechanism to provide clear direction and target for cerebral hemorrhage treatment caused by cerebral edema.[Methods]SD rats were randomly divided into six groups: model group,sham operation group,Buyanghuanwu decoction low,medium and high dose groups,and Ginkgo biloba group. Model group,Buyanghuanwu decoction group,G. biloba group were prepared to be intracerebral hemorrhage rat models by referring to Rosenberg law. While the expression of " polarity" of aquaporin AQP4 was detected by immunofluorescence labeling method,the Evans blue( Evans Blue,EB) content of brain tissue was determined by Spectrophotometry. In addition,the water content of brain tissue was detected by wet and dry weight method. [Results] When compared to the model group,the Buyang Huanwu decoction group,G. biloba group of PI3K and AKT proteins expression increased significantly( P < 0. 05) and AQP4 in Astrocyte end feet membrane concentrated expression significantly increased( P < 0. 05),EB content and water content of brain tissue significantly reduced( P <0. 05).[Conclusions]The protective mechanisms of Buyanghuanwu decoction on cerebral hemorrhage can work might because it can activate PI3K/AKT signaling pathway,regulate AQP4 " polar" expression,and reduce the permeability of the blood brain barrier and cerebral edema.展开更多
BACKGROUND Diabetic skin ulcers,a significant global healthcare burden,are mainly caused by the inhibition of cell proliferation and impaired angiogenesis.XB130 is an adaptor protein that regulates cell proliferation ...BACKGROUND Diabetic skin ulcers,a significant global healthcare burden,are mainly caused by the inhibition of cell proliferation and impaired angiogenesis.XB130 is an adaptor protein that regulates cell proliferation and migration.However,the role of XB130 in the development of diabetic skin ulcers remains unclear.AIM To investigate whether XB130 can regulate the inhibition of proliferation and vascular damage induced by high glucose.Additionally,we aim to determine whether XB130 is involved in the healing process of diabetic skin ulcers,along with its molecular mechanisms.METHODS We conducted RNA-sequencing analysis to identify the key genes involved in diabetic skin ulcers.We investigated the effects of XB130 on wound healing using histological analyses.In addition,we used reverse transcription-quantitative polymerase chain reaction,Western blot,terminal deoxynucleotidyl transferasemediated dUTP nick end labeling staining,immunofluorescence,wound healing,and tubule formation experiments to investigate their effects on cellular processes in human umbilical vein endothelial cells(HUVECs)stimulated with high glucose.Finally,we performed functional analysis to elucidate the molecular mechanisms underlying diabetic skin ulcers.RESULTS RNA-sequencing analysis showed that the expression of XB130 was up-regulated in the tissues of diabetic skin ulcers.Knockdown of XB130 promoted the healing of skin wounds in mice,leading to an accelerated wound healing process and shortened wound healing time.At the cellular level,knockdown of XB130 alleviated high glucose-induced inhibition of cell proliferation and angiogenic impairment in HUVECs.Inhibition of the PI3K/Akt pathway removed the proliferative effects and endothelial protection mediated by XB130.CONCLUSION The findings of this study indicated that the expression of XB130 is up-regulated in high glucose-stimulated diabetic skin ulcers and HUVECs.Knockdown of XB130 promotes cell proliferation and angiogenesis via the PI3K/Akt signalling pathway,which accelerates the healing of diabetic skin ulcers.展开更多
Objective:To observe the effect of Liancao-Xieli capsule on intestinal mucosal inflammatory factors and TLR4/PI3K/Akt/mTOR signaling pathway in mice with ulcerative colitis(UC);Methods:40 male C57BL/6 mice were random...Objective:To observe the effect of Liancao-Xieli capsule on intestinal mucosal inflammatory factors and TLR4/PI3K/Akt/mTOR signaling pathway in mice with ulcerative colitis(UC);Methods:40 male C57BL/6 mice were randomly divided into the control group,model group,Liancao-Xieli group and mesalazine group,with 10 mice in each group.In addition to the control group,the remaining three groups of mice were induced by 3%dextran sulfate sodium(DSS)to induce acute UC model.During the modeling period,mice in each group were given corresponding drugs and normal saline by gavage.At the end of the experiment,HE staining was used to observe the pathological changes of colonic tissue in each group,and ELISA was used to detect the inflammatory factors(TNF-α,IL-6,IL-1β,IL-8,IL-17,and INF-γ)in serum and colonic tissue.The expression levels of TLR4/PI3K/Akt/mTOR signaling pathway related proteins were also detected by Western blot;Results:Compared with the model group,Liancao-Xieli capsule could significantly increase the colon length and decrease the score of colon histopathology in UC mice(P<0.01).In addition,the levels of TNF-α,IL-6,IL1β,IL-8,IL-17,and INF-γwere significantly reduced in serum and colon tissue,and the expressions of TLR4,PI3K,p-Akt and p-mTOR were significantly down-regulated in LiancaoXieyi group when compared with the model group(P<0.01).While the expressions of Akt and mTOR were not significantly affected in Liancao-Xieyi group(P>0.05);Conclusion:LiancaoXieli capsule can reduce the secretion of inflammatory factors,improve the intestinal mucosal damage and inflammatory response in UC by inhibiting the activation of TLR4/PI3K/Akt/mTOR signaling pathway。展开更多
Some studies have shown that the co-morbidity of insomnia and anxiety and depression is very prominent, among which 70% of anxiety patients are accompanied by sleep disorders, which is commonly referred to as insomnia...Some studies have shown that the co-morbidity of insomnia and anxiety and depression is very prominent, among which 70% of anxiety patients are accompanied by sleep disorders, which is commonly referred to as insomnia of liver depression syndrome in traditional Chinese medicine. The etiology and pathogenesis of traditional Chinese medicine is liver-qi discomfort, and soothing liver and relieving depression should be taken as the basic treatment method and treatment principle. By sorting out the relevant literature on PI3K/Akt signaling pathway, the relationship between PI3K/Akt signaling pathway and depression and insomnia was sorted out, and the possible mechanism of Liver-soothing and Depression-Relieving therapy for insomnia of liver-depression syndrome was found.展开更多
基金supported by the National Natural Science Foundation of China,No.81971097(to JY)。
文摘Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.
基金funded by the National Key Research and Development Program of China(2020YFD0900902)Zhejiang Province Public Welfare Technology Application Research Project(LGJ21C20001)Zhejiang Provincial Key Research and Development Project of China(2019C02076 and 2019C02075)。
文摘Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.
基金supported by the Chongqing Science and Technology CommitteeNatural Science Foundation of Chongqing,No.cstc2021jcyj-msxmX0065 (to YL)。
文摘Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.
基金Supported by Doctoral Special Research Fund of Qiqihar Medical College,No.QY2016B-06
文摘BACKGROUND Histone Lysine Specific Demethylase 1(LSD1)is the first histone demethylase to be discovered,which regulates various biological functions by making lysine of histone H3K4,H3K9 and non-histone substrates demethylated.Abnormal regulation of LSD1 is closely related to the occurrence and development of gastric cancer.The change of LSD1 expression level plays an important role in the proliferation and metastasis of gastric cancer cells.The study of its function and mechanism may provide a theoretical basis for early diagnosis and targeted therapy of gastric cancer.AIM To investigate the effect of downregulation of lysine-specific demethylase 1(LSD1)expression on proliferation and invasion of gastric cancer cells and the possible regulatory mechanisms of the VEGF-C/PI3K/AKT signaling pathway.METHODS The LSD1-specific short hairpin RNA(shRNA)interference plasmid was transiently transfected,and expression of LSD1 was downregulated.The cell proliferation ability of LSD1 was observed by CCK-8 assay after downregulating expression of LSD1.Transwell invasion assay was used to observe the change of cell invasion ability after downregulating expression of LSD1.Expression of phosphorylated phosphoinositide 3-kinase(p-PI3K),PI3K,p-AKT,AKT,vascular endothelial growth factor receptor(VEGFR)-3,matrix metalloproteinase(MMP)-2 and MMP-9 in each group was detected by Western blotting.RESULTS The cell proliferation ability of transiently transfected LSD1-shRNA interference plasmid group was significantly lower than that of the control group(P<0.05).Transwell invasion assay showed that the number of cells across the membrane of the LSD1-shRNA transfection group(238.451±5.216)was significantly lower than that of the control group(49.268±6.984)(P<0.01).Western blotting showed that expression level of VEGF-C,p-PI3K,PI3K,p-AKT,AKT,VEGFR-3,MMP-2 and MMP-9 in the LSD1-shRNA group was significantly lower than that in the control group(P<0.05).CONCLUSION Downregulation of LSD1 expression inhibits metastatic potential of gastric cancer cells,and VEGF-C-mediated activation of PI3K/AKT signaling pathway,which may be an important mechanism for inhibiting lymph node metastasis in gastric cancer cells.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education,Science and Technology (NRF2020R1A2C1014798 to E-K Kim)。
文摘We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effects on the IGF-1/PI3K/Akt/mTOR pathway in benign prostatic hyperplasia(BPH).Metabolites in ADLE were analyzed using UHPLC-qTOF-MS and HPLC.IQ was orally administered(1 or 10 mg/kg)to a testosterone propionate-induced BPH rat model,and its effects on the prostate weight were evaluated.The effect of IQ on androgen receptor(AR)signaling was analyzed in LNCaP cells.Whether IGF-1 and IQ affect the IGF-1/PI3K/Akt/mTOR pathway in BPH-1 cells was also examined.The metabolites in ADLE were identified and quantified,which confirmed that ADLE contained abundant IQ(20.88 mg/g).IQ significantly reduced the prostate size in a concentration-dependent manner in a BPH rat model,and significantly decreased the expression of AR signaling factors in the rat prostate tissue and LNCaP cells in a concentration-dependent manner.IQ also inhibited the PI3K/AKT/mTOR pathway activated by IGF-1 treatment in BPH-1 cells.In BPH-1 cells,IQ led to G0/G1 arrest and suppressed the expression of proliferation factors while inducing apoptosis.Thus,IQ shows potential for use as a pharmaceutical and nutraceutical for BPH.
基金supported by the National Natural Science Foundation of China(81903871)Natural Science Foundation of Jiangsu Province(BK20190565)+1 种基金Fundamental Research Funds for the Central Universities(2632021ZD16)Zhenjiang City 2022 Science and Technology Innovation Fund(SH2022084).
文摘Background:The purpose of the study was to investigatethe active ingredients and potential biochemicalmechanisms of Simiao Wan(SMW)in obesity-associated insulin resistance.Methods:An integrated network pharmacology method to screen the active compoundsand candidate targets,construct the protein-protein-interaction network,and ingredients-targets-pathways network was constructed for topological analysis to identify core targets and main ingredients.To find the possible signaling pathways,enrichment analysis was performed.Further,a model of insulin resistance in HL-7702 cells was established to verify the impact of SMW and the regulatory processes.Results:An overall of 63 active components and 151 candidate targets were obtained,in which flavonoids were the main ingredients.Enrichment analysis indicated that the PI3K-Akt signaling pathway was the potential pathway regulated by SMW in obesity-associated insulin resistance treatment.The result showed that SMW could significantly ameliorate insulin sensitivity,increase glucose synthesis and glucose utilization and reduce intracellular lipids accumulation in hepatocytes.Also,SMW inhibited diacylglycerols accumulation-induced PKCεactivity and decreased its translocation to the membrane.Conclusion:SMW ameliorated obesity-associated insulin resistance through PKCε/IRS-1/PI3K/Akt signaling axis in hepatocytes,providing a new strategy for metabolic disease treatment.
基金supported by the National Natural Science Foundation of China,No.81403278the Natural Science Foundation of Shaanxi Province of China,No.2017JM8058the Fundamental Research Funds for the Central Universities of China,No.GK202103079(all to QZ)。
文摘Baicalin is a natural active ingredient isolated from Scutellariae Radix that can cross the blood-brain barrier and exhibits neuroprotective effects on multiple central nervous system diseases.However,the mechanism behind the neuroprotective effects remains unclear.In this study,rat models of spinal cord injury were established using a modified Allen's impact method and then treated with intraperitoneal injection of Baicalin.The results revealed that Baicalin greatly increased the Basso,Beattie,Bresnahan Locomotor Rating Scale score,reduced blood-spinal cord barrier permeability,decreased the expression of Bax,Caspase-3,and nuclear factorκB,increased the expression of Bcl-2,and reduced neuronal apoptosis and pathological spinal cord injury.SH-SY5 Y cell models of excitotoxicity were established by application of 10 m M glutamate for 12 hours and then treated with 40μM Baicalin for 48 hours to investigate the mechanism of action of Baicalin.The results showed that Baicalin reversed tight junction protein expression tendencies(occludin and ZO-1)and apoptosis-related protein expression(Bax,Bcl-2,Caspase-3,and nuclear factor-κB),and also led to up-regulation of PI3 K and Akt phosphorylation.These effects on Bax,Bcl-2,and Caspase-3 were blocked by pretreatment with the PI3 K inhibitor LY294002.These findings suggest that Baicalin can inhibit bloodspinal cord barrier permeability after spinal cord injury and reduce neuronal apoptosis,possibly by activating the PI3 K/Akt signaling pathway.This study was approved by Animal Ethics Committee of Xi'an Jiaotong University on March 6,2014.
基金Supported by the Middle-Young Age Backbone Talent Cultivation Program of Fujian Health System,No.2013-ZQNJC-2Key Projects of Science and Technology Plan of Fujian Province,No.2014Y0009
文摘AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eEF1A2 levels were detected in 62 HCC tissue samples and paired pericarcinomatous specimens, and the human HCC cell lines SK-HEP-1, HepG2 and BEF-7402, by real-time PCR and immunohistochemistry. Experimental groups included eEF1A2 silencing in BEL-7402 cells with lentivirus eEF1A2-shRNA (KD group) and eEF1A2 overexpression in SK-HEP-1 cells with eEF1A2 plasmid (OE group). Non-transfected cells (control group) and lentivirus-based empty vector transfected cells (NC group) were considered control groups. Cell proliferation (MTT and colony formation assays), apoptosis (Annexin V-APC assay), cell cycle (DNA ploidy assay), and migration and invasion (Transwell assays) were assessed. Protein levels of PI3K/Akt/NF-κB signaling effectors were evaluated by Western blot.RESULTS: eEF1A2 mRNA and protein levels were significantly higher in HCC cancer tissue samples than in paired pericarcinomatous and normal specimens. SK-HEP-1 cells showed lower eEF1A2 mRNA levels; HepG2 and BEL-7402 cells showed higher eEF1A2 mRNA levels, with BEL-7402 cells displaying the highest amount. Efficient eEF1A2 silencing resulted in reduced cell proliferation, migration and invasion, increased apoptosis, and induced cell cycle arrest. The PI3K/Akt/NF-κB signaling pathway was notably inhibited. Inversely, eEF1A2 overexpression resulted in promoted cell proliferation, migration and invasion.CONCLUSION: eEF1A2, highly expressed in HCC, is a potential oncogene. Its silencing significantly decreases HCC tumorigenesis, likely by inhibiting PI3K/Akt/NF-κB signaling.
基金Scientific Research Project of Education Department of Liaoning Province, China (No.L2010676)Project of Science and Technology Commission of Shenyang City,China(No.F10-149-9-58)Doctoral Foundation of Ministry of Education of China (No.20102104120027)
文摘AIM: To determine whether the PI3K/AKT/mTOR pathway is activated in proliferative vitreoretinopathy (PVR) in homo-sapiens. METHODS: The retina of controls and patients with PVR were collected and their levels of PI3K, phospho-AKT, phospho-mTOR, phospho-p70S6k and phospho-4EBP-1 were determined by Western blot. The cultured human retinal pigment epithelial cell line D407 was treated with a specific mTOR inhibitor, rapamycin (RAPA) or a PI3K inhibitor, LY294002, of various concentrations and durations. Cell morphology was observed by phase contrast microscopy and the proliferation and apoptosis of treated cells were determined by MTT assay and flow cytometry. RESULTS: Levels of PI3K, phospho-AKT, phospho-mTOR, phospho-P70S6K and phospho-4EBP1 was increased in the retina in PVR (P <0.05). In D407 cells, both RAPA and LY294002 significantly inhibited cell proliferation and cell cycle progression, and promoted apoptosis (P <0.05); morphologically, the cells became smaller. Both RAPA and LY294002 reduced levels of phospho-AKT, phospho-mTOR, phospho-p70S6k and phospho-4EBP1 expression (P <0.05). RAPA, but not LY294002, had no significant effect on PI3K expression. CONCLUSION: PI3K/AKT/mTOR signaling pathway is highly activated in the retinal pigment epithelial cells of PVR. The inhibitors of PI3K/AKT/mTOR signaling pathway, RAPA and LY294002, could inhibited the PI3K/AKT/mTOR signaling pathway by reducing the levels of phosphorylation of mTOR pathway components.
基金Supported by National Natural Science Foundation of China,No.817706555Special Project from the Central Government of Liaoning Province,No.2018107003+6 种基金Liaoning Province Medical Science and Technology Achievements Transformation Foundation,No.2018225120China Postdoctoral Science Foundation,No.2020M670101ZXDoctoral Scientific Research Foundation of Liaoning Province,No.2019-BS-276Science and Technology Program of Shenyang,No.19-112-4-103Youth Support Foundation of China Medical University,No.QGZ2018058Scientific Fund of Shengjing Hospital,No.201801345 Talent Project of Shengjing Hospital,No.52-30C.
文摘BACKGROUND Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments.Scoparone,a traditional Chinese medicine monomer with a wide range of pharmacological properties,has attracted considerable attention for its antitumor activity.AIM To explore the potential antitumor effect of scoparone on pancreatic cancer and the possible molecular mechanism of action.METHODS The target genes of scoparone were determined using both the bioinformatics and multiplatform analyses.The effect of scoparone on pancreatic cancer cell proliferation,migration,invasion,cell cycle,and apoptosis was detected in vitro.The expression of hub genes was tested using quantitative reverse transcription polymerase chain reaction(qRT-PCR),and the molecular mechanism was analyzed using Western blot.The in vivo effect of scoparone on pancreatic cancer cell proliferation was detected using a xenograft tumor model in nude mice as well as immunohistochemistry.RESULTS The hub genes involved in the suppression of pancreatic cancer by scoparone were obtained by network bioinformatics analyses using publicly available databases and platforms,including SwissTargetPrediction,STITCH,GeneCards,CTD,STRING,WebGestalt,Cytoscape,and Gepia;AKT1 was confirmed using qRT-PCR to be the hub gene.Cell Counting Kit-8 assay revealed that the viability of Capan-2 and SW1990 cells was significantly reduced by scoparone treatment exhibiting IC50 values of 225.2μmol/L and 209.1μmol/L,respectively.Wound healing and transwell assays showed that scoparone inhibited the migration and invasion of pancreatic cancer cells.Additionally,flow cytometry confirmed that scoparone caused cell cycle arrest and induced apoptosis.Scoparone also increased the expression levels of Bax and cleaved caspase-3,decreased the levels of MMP9 and Bcl-2,and suppressed the phosphorylation of Akt without affecting total PI3K and Akt.Moreover,compared with the control group,xenograft tumors,in the 200μmol/L scoparone treatment group,were smaller in volume and lighter in weight,and the percentages of Ki65-and PCNA-positive cells were decreased.CONCLUSION Our findings indicate that scoparone inhibits pancreatic cancer cell proliferation in vitro and in vivo,inhibits migration and invasion,and induces cycle arrest and apoptosis in vitro through the PI3K/Akt signaling pathway.
基金supported by the National Natural Science Foundation of China(Grant Nos.81770110,81900131,and 82000219)the Anticancer Major Special Project of Tianjin(Grant No.12ZCDZSY18000)+4 种基金the Tianjin Municipal Natural Science Foundation(Grant Nos.18JCYBJC27200 and 18JCQNJC80400)the Tianjin Education Commission Research Project(Grant Nos.2018KJ043 and 2018KJ045)the Tianjin Health and Family Planning Commission(Grant No.15KG150)the Youth Incubation Fund of Tianjin Medical University General Hospital(Grant No.ZYYFY2019020)the Tianjin Science and Technology Planning Project(Grant No.20YFZCSY00060)。
文摘Objective:Myeloma bone disease(MBD)is the most common complication of multiple myeloma(MM).Our previous study showed that the serum levels of C3/C4 in MM patients were significantly positively correlated with the severity of bone disease.However,the mechanism of C3 a/C4 a in osteoclasts MM patients remains unclear.Methods:The formation and function of osteoclasts were analyzed after adding C3 a/C4 a in vitro.RNA-seq analysis was used to screen the potential pathways affecting osteoclasts,and the results were verified by Western blot,q RT-PCR,and pathway inhibitors.Results:The osteoclast area per view induced by 1μg/m L(mean±SD:50.828±12.984%)and 10μg/m L(53.663±12.685%)of C3 a was significantly increased compared to the control group(0μg/m L)(34.635±8.916%)(P<0.001 and P<0.001,respectively).The relative m RNA expressions of genes,OSCAR/TRAP/RANKL/cathepsin K,induced by 1μg/m L(median:5.041,3.726,1.638,and 4.752,respectively)and 10μg/m L(median:5.140,3.702,2.250,and 5.172,respectively)of C3 a was significantly increased compared to the control group(median:3.137,2.004,0.573,and 2.257,respectively)(1μg/m L P=0.001,P=0.003,P<0.001,and P=0.008,respectively;10μg/m L:P<0.001,P=0.019,P<0.001,and P=0.002,respectively).The absorption areas of the osteoclast resorption pits per view induced by 1μg/m L(mean±SD:51.464±11.983%)and 10μg/m L(50.219±12.067%)of C3 a was also significantly increased(33.845±8.331%)(P<0.001 and P<0.001,respectively)compared to the control.There was no difference between the C4 a and control groups.RNA-seq analysis showed that C3 a promoted the proliferation of osteoclasts using the phosphoinositide 3-kinase(PI3 K)signaling pathway.The relative expressions of PIK3 CA/phosphoinositide dependent kinase-1(PDK1)/serum and glucocorticoid inducible protein kinases(SGK3)genes and PI3 K/PDK1/p-SGK3 protein in the C3 a group were significantly higher than in the control group.The activation role of C3 a in osteoclasts of MM patients was reduced by the SGK inhibitor(EMD638683).Conclusions:C3 a activated osteoclasts by regulating the PI3 K/PDK1/SGK3 pathways in MM patients,which was reduced using a SGK inhibitor.Overall,our results identified potential therapeutic targets and strategies for MBD patients。
基金supported by the Chinese Medicine Research Foundation of Jiangxi Provincial Health Department of China,No.2013A040the Science and Technology Program of Jiangxi Provincial Health Department of China,No.20123023the Science and Technology Support Program of Jiangxi Province of China,No.2009BSB11209
文摘Baicalin is a flavonoid compound extracted from Scutellaria baicalensis root.Recent evidence indicates that baicalin is neuroprotective in models of ischemic stroke.Here,we investigate the neuroprotective effect of baicalin in a neonatal rat model of hypoxic-ischemic encephalopathy.Seven-day-old pups underwent left common carotid artery ligation followed by hypoxia(8% oxygen at 37°C) for 2 hours,before being injected with baicalin(120 mg/kg intraperitoneally) and examined 24 hours later.Baicalin effectively reduced cerebral infarct volume and neuronal loss,inhibited apoptosis,and upregulated the expression of p-Akt and glutamate transporter 1.Intracerebroventricular injection of the phosphoinositide 3-kinase/protein kinase B(PI3 K/Akt) inhibitor LY294002 30 minutes before injury blocked the effect of baicalin on p-Akt and glutamate transporter 1,and weakened the associated neuroprotective effect.Our findings provide the first evidence,to our knowledge that baicalin can protect neonatal rat brains against hypoxic-ischemic injury by upregulating glutamate transporter 1 via the PI3 K/Akt signaling pathway.
文摘Objective Osteogenesis is vitally important for bone defect repair,and Zuo Gui Wan(ZGW)is a classic prescription in traditional Chinese medicine(TCM)for strengthening bones.However,the specific mechanism by which ZGW regulates osteogenesis is still unclear.The current study is based on a network pharmacology analysis to explore the potential mechanism of ZGW in promoting osteogenesis.Methods A network pharmacology analysis followed by experimental validation was applied to explore the potential mechanisms of ZGW in promoting the osteogenesis of bone marrow mesenchymal stem cells(BMSCs).Results In total,487 no-repeat targets corresponding to the bioactive components of ZGW were screened,and 175 target genes in the intersection of ZGW and osteogenesis were obtained.And 28 core target genes were then obtained from a PPI network analysis.A GO functional enrichment analysis showed that the relevant biological processes mainly involve the cellular response to chemical stress,metal ions,and lipopolysaccharide.Additionally,KEGG pathway enrichment analysis revealed that multiple signaling pathways,including the phosphatidylinositol-3-kinase/protein kinase B(PI3K/AKT)signaling pathway,were associated with ZGW-promoted osteogensis.Further experimental validation showed that ZGW could increase alkaline phosphatase(ALP)activity as well as the mRNA and protein levels of ALP,osteocalcin(OCN),and runt related transcription factor 2(Runx 2).What’s more,Western blot analysis results showed that ZGW significantly increased the protein levels of p-PI3K and p-AKT,and the increases of these protein levels significantly receded after the addition of the PI3K inhibitor LY294002.Finally,the upregulated osteogenic-related indicators were also suppressed by the addition of LY294002.Conclusion ZGW promotes the osteogenesis of BMSCs via PI3K/AKT signaling pathway.
基金supported by National Natural Science Foundation of China(Grant No.81860873 and 81960864)the Scientific and Technological Projects of Guizhou Province(Qian Kehe Jichu(2016)1401)High-level Talents Project of Guizhou Province(GUTCM(ZQ2018005)).
文摘Background:Liqi Huoxue dripping pill(LQHXDP),a traditional Chinese drug for coronary heart disease,has a protective effect on the heart of rats with myocardial ischemia-reperfusion injury(MIRI)in previous studies;however,its mechanism of action remains unclear.The purpose of this study was to investigate the protective mechanism of LQHXDP on MIRI in rats and its relationship with the PI3K/Akt signaling pathway.Methods:In this study,Sprague-Dawley rats were pre-infused with LQHXDP(175 mg/kg/d)for 10 days.PI3K inhibitor LY294002(0.3 mg/kg)was intravenously injected 15 minutes before ischemia.The rat model of MIRI was established by ligating the left anterior descending coronary artery.Subsequently,cardiac hemodynamics,serum myocardial injury markers,inflammatory factors,myocardial infarct size,antioxidant indexes,myocardial histopathology,and phosphorylation levels of key proteins of PI3K/Akt signaling pathway were assessed in rats.Results:LQHXDP was found to improve cardiac hemodynamic indexes,reduce serum creatine kinase MB isoenzyme activity and cardiac troponin and heart-type fatty acid binding protein levels,lower serum interleukin-1 beta,interleukin-6 and tumour necrosis factorαlevels,reduce the myocardial infarct size and enhance the antioxidant capacity of myocardial tissue in MIRI rats.Pathological analysis revealed that LQHXDP attenuated the extent of myocardial injury and protected mitochondria from damage in MIRI rats.Immunoblot analysis revealed that LQHXDP increased the expression levels of p-Akt and p-GSK-3βin MIRI rat cardiomyocytes.PI3K inhibitor LY294002 could impair these effects of LQHXDP.Conclusion:LQHXDP attenuated myocardial injury,attenuated oxidative stress injury and reduced inflammatory response in MIRI rats,and its protective effects were mediated by activating of PI3K/Akt/GSK-3βsignaling pathway.
基金supported by the National Natural Science Foundation of China (no. 81904109)the Natural Science Project of Hunan Provincial Department of Science and Technology (no.2023JJ30361, no. 2019JJ50344).
文摘Background:To investigate the role of fibroblast growth factor 2(FGF2)in chemotherapy resistance of colon cancer.Methods:An HCT116/5-fluorouracil(5-FU)-resistant cell line was established,and FGF2 levels were detected in a sensitive cell group(HCT116)and a resistant cell group(HCT1116-R)using different methods.Fibroblast growth factor 2 levels in the medium were determined by enzyme-linked immunoassay.The protein expressions of FGF2,fibroblast growth factor receptor 1(FGFR1),and phospho-FGFR1 were assessed by Western blotting,and FGF2 mRNA levels were detected by quantitative real-time polymerase chain reaction.Fibroblast growth factor 2 recombinant protein was added to sensitive cells,and FGFR inhibitor AZD4547 was added to resistant cells,and the cell survival rate was determined using the cell counting kit-8 method and the protein expressions of PI3K(phosphatidylinositol 3 kinase),p-PI3K(phospho-PI3K),Akt(protein kinase B),p-Akt(phospho-Akt),mammalian target of rapamycin(mTOR),p-mTOR(phospho-mTOR),Bad(Bcl-xL/Bcl-2-associated death promoter),NF-κB(nuclear factorκB),GSK-3(glycogen synthase kinase-3),FKHR(forkhead box protein O1),and PTEN(phosphatase and tensin homolog deleted on chromosome ten)were detected by Western blotting.Results:Fibroblast growth factor 2 protein and mRNA expression levels in the HCT116-R group were significantly higher than those in the HCT116 group.Fibroblast growth factor 2 increased the survival rate of HCT116 cells;improved tolerance to 5-FU;upregulated p-PI3K,p-Akt,and p-mTOR;and downregulated Bad.The FGFR inhibitor AZD4547 decreased cell survival rate and tolerance to 5-FU;downregulated p-PI3K,p-Akt,and p-mTOR expression;and upregulated Bad.Conclusions:Fibroblast growth factor 2 promotes chemotherapy tolerance in colon cancer cells by activating the Akt/mTOR and Akt/Bad signaling pathways downstream of PI3K.
基金Supported by 2018 National Undergraduate Innovation and Entrepreneurship Training Program of Chengde Medical College(2018004)Key Medicinal Research Project of Hebei Provincial Department of Public Health(20170872)
文摘[Objectives] To explore the effect of Buyanghuanwu decoction on PI3K/AKT signaling pathway and aquaporin AQP4 in cerebral hemorrhage rats and clarify the mechanism to provide clear direction and target for cerebral hemorrhage treatment caused by cerebral edema.[Methods]SD rats were randomly divided into six groups: model group,sham operation group,Buyanghuanwu decoction low,medium and high dose groups,and Ginkgo biloba group. Model group,Buyanghuanwu decoction group,G. biloba group were prepared to be intracerebral hemorrhage rat models by referring to Rosenberg law. While the expression of " polarity" of aquaporin AQP4 was detected by immunofluorescence labeling method,the Evans blue( Evans Blue,EB) content of brain tissue was determined by Spectrophotometry. In addition,the water content of brain tissue was detected by wet and dry weight method. [Results] When compared to the model group,the Buyang Huanwu decoction group,G. biloba group of PI3K and AKT proteins expression increased significantly( P < 0. 05) and AQP4 in Astrocyte end feet membrane concentrated expression significantly increased( P < 0. 05),EB content and water content of brain tissue significantly reduced( P <0. 05).[Conclusions]The protective mechanisms of Buyanghuanwu decoction on cerebral hemorrhage can work might because it can activate PI3K/AKT signaling pathway,regulate AQP4 " polar" expression,and reduce the permeability of the blood brain barrier and cerebral edema.
基金the National Natural Science Foundation of China,No.82272355Shanghai Science and Technology Committee,No.21410750500.
文摘BACKGROUND Diabetic skin ulcers,a significant global healthcare burden,are mainly caused by the inhibition of cell proliferation and impaired angiogenesis.XB130 is an adaptor protein that regulates cell proliferation and migration.However,the role of XB130 in the development of diabetic skin ulcers remains unclear.AIM To investigate whether XB130 can regulate the inhibition of proliferation and vascular damage induced by high glucose.Additionally,we aim to determine whether XB130 is involved in the healing process of diabetic skin ulcers,along with its molecular mechanisms.METHODS We conducted RNA-sequencing analysis to identify the key genes involved in diabetic skin ulcers.We investigated the effects of XB130 on wound healing using histological analyses.In addition,we used reverse transcription-quantitative polymerase chain reaction,Western blot,terminal deoxynucleotidyl transferasemediated dUTP nick end labeling staining,immunofluorescence,wound healing,and tubule formation experiments to investigate their effects on cellular processes in human umbilical vein endothelial cells(HUVECs)stimulated with high glucose.Finally,we performed functional analysis to elucidate the molecular mechanisms underlying diabetic skin ulcers.RESULTS RNA-sequencing analysis showed that the expression of XB130 was up-regulated in the tissues of diabetic skin ulcers.Knockdown of XB130 promoted the healing of skin wounds in mice,leading to an accelerated wound healing process and shortened wound healing time.At the cellular level,knockdown of XB130 alleviated high glucose-induced inhibition of cell proliferation and angiogenic impairment in HUVECs.Inhibition of the PI3K/Akt pathway removed the proliferative effects and endothelial protection mediated by XB130.CONCLUSION The findings of this study indicated that the expression of XB130 is up-regulated in high glucose-stimulated diabetic skin ulcers and HUVECs.Knockdown of XB130 promotes cell proliferation and angiogenesis via the PI3K/Akt signalling pathway,which accelerates the healing of diabetic skin ulcers.
基金Heilongjiang Provincial Health Commission Scientific Research Project(No.2020-291)Heilongjiang Provincial Traditional Chinese Medicine Research Project(No.ZHY19-062,ZHY2020-041)+2 种基金Heilongjiang Provincial Natural Science Foundation Joint Guidance Project(No.LH2019H095)State Administration of Traditional Chinese Medicine Research Project(No.2016ZX05)Heilongjiang Province Colleges and Universities Innovative Talents Training Program Project(No.UNPYSCT-2016218)。
文摘Objective:To observe the effect of Liancao-Xieli capsule on intestinal mucosal inflammatory factors and TLR4/PI3K/Akt/mTOR signaling pathway in mice with ulcerative colitis(UC);Methods:40 male C57BL/6 mice were randomly divided into the control group,model group,Liancao-Xieli group and mesalazine group,with 10 mice in each group.In addition to the control group,the remaining three groups of mice were induced by 3%dextran sulfate sodium(DSS)to induce acute UC model.During the modeling period,mice in each group were given corresponding drugs and normal saline by gavage.At the end of the experiment,HE staining was used to observe the pathological changes of colonic tissue in each group,and ELISA was used to detect the inflammatory factors(TNF-α,IL-6,IL-1β,IL-8,IL-17,and INF-γ)in serum and colonic tissue.The expression levels of TLR4/PI3K/Akt/mTOR signaling pathway related proteins were also detected by Western blot;Results:Compared with the model group,Liancao-Xieli capsule could significantly increase the colon length and decrease the score of colon histopathology in UC mice(P<0.01).In addition,the levels of TNF-α,IL-6,IL1β,IL-8,IL-17,and INF-γwere significantly reduced in serum and colon tissue,and the expressions of TLR4,PI3K,p-Akt and p-mTOR were significantly down-regulated in LiancaoXieyi group when compared with the model group(P<0.01).While the expressions of Akt and mTOR were not significantly affected in Liancao-Xieyi group(P>0.05);Conclusion:LiancaoXieli capsule can reduce the secretion of inflammatory factors,improve the intestinal mucosal damage and inflammatory response in UC by inhibiting the activation of TLR4/PI3K/Akt/mTOR signaling pathway。
文摘Some studies have shown that the co-morbidity of insomnia and anxiety and depression is very prominent, among which 70% of anxiety patients are accompanied by sleep disorders, which is commonly referred to as insomnia of liver depression syndrome in traditional Chinese medicine. The etiology and pathogenesis of traditional Chinese medicine is liver-qi discomfort, and soothing liver and relieving depression should be taken as the basic treatment method and treatment principle. By sorting out the relevant literature on PI3K/Akt signaling pathway, the relationship between PI3K/Akt signaling pathway and depression and insomnia was sorted out, and the possible mechanism of Liver-soothing and Depression-Relieving therapy for insomnia of liver-depression syndrome was found.