Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2...Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.展开更多
Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrate...Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.展开更多
Background:Oral squamous cell carcinoma(OSCC)is a common malignant tumor.Recently,Laminin Gamma 2(LAMC2)has been shown to be abnormally expressed in OSCC;however,how LAMC2 signaling contributes to the occurrence and d...Background:Oral squamous cell carcinoma(OSCC)is a common malignant tumor.Recently,Laminin Gamma 2(LAMC2)has been shown to be abnormally expressed in OSCC;however,how LAMC2 signaling contributes to the occurrence and development of OSCC and the role of autophagy in OSCC has not been fully explored.This study aimed to analyze the role and mechanism of LAMC2 signaling in OSCC and the involvement of autophagy in OSCC.Methods:To explore the mechanism by which LAMC2 is highly expressed in OSCC,we used small interfering RNA(siRNA)to knock down LAMC2 to further observe the changes in the signaling pathway.Furthermore,we used cell proliferation assays,Transwell invasion assays,and wound-healing assays to observe the changes in OSCC proliferation,invasion,and metastasis.RFP-LC3 was used to detect the level of autophagy intensity.A cell line-derived xenograft(CDX)model was used to detect the effect of LAMC2 on tumor growth in vivo.Results:This study found that the level of autophagy was correlated with the biological behavior of OSCC.The downregulation of LAMC2 activated autophagy and inhibited OSCC proliferation,invasion,and metastasis via inhibiting the PI3K/AKT/mTOR pathway.Moreover,autophagy has a dual effect on OSCC,and the synergistic downregulation of LAMC2 and autophagy can inhibit OSCC metastasis,invasion,and proliferation via the PI3K/AKT/mTOR pathway.Conclusions:LAMC2 interacts with autophagy to regulate OSCC metastasis,invasion,and proliferation via the PI3K/AKT/mTOR pathway.LAMC2 down-regulation can synergistically modulate autophagy to inhibit OSCC migration,invasion,and proliferation.展开更多
This study was designed to determine the impact of chrysoeriol on proliferation and cell cycle progression in the human multiple myeloma cell lines RPMI 8226 and KM3,and its related molecular mechanisms.Chryseoriol wa...This study was designed to determine the impact of chrysoeriol on proliferation and cell cycle progression in the human multiple myeloma cell lines RPMI 8226 and KM3,and its related molecular mechanisms.Chryseoriol was identified by using the phosphorylated AKT-specific cytoblot high throughput assay.CCK-8 assay was employed to examine the growth inhibition rate and IC 50 (48 h) in peripheral blood mononuclear cells (PBMNCs),RPMI 8226 and KM3 cells treated with chrysoeriol at various concentrations.Cells were labeled with 5-6-carboxyfluorescein diacetate succinimidyl ester (CFSE),and the proliferation dynamics was detected by flow cytometry and analyzed with ModFit software.The cell cycles of RPMI 8226 and KM3 cells were measured by flow cytometry when the IC 50 concentration of chrysoeriol was adopted.The alterations in cell-cycle related proteins (Cyclin B1,Cyclin D1,p21) and proteins in PI3K-AKT-mTOR pathway were determined by Western blot analysis.The results showed the proliferation of multiple myeloma cells was significantly inhibited by chrysoeriol,resulting in cell cycle arrest in G 2 /M phase.Chrysoeriol could significantly reduce the expression of p-AKT (s473) and p-4eBP1 (t37/46) protein,meanwhile enhanced Cyclin B1 and p21 protein expression.Similar effects were not observed in PBMNCs from normal donors.It was concluded that chrysoeriol was a selective PI3K-AKT-mTOR pathway inhibitor.It restrained the proliferation of human multiple myeloma cells,but didn’t affect proliferation of PBMNCs from normal donors.It might exhibit the cell cycle regulatory effect via the inhibition of PI3K-AKT-mTOR signal pathway.展开更多
AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eE...AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eEF1A2 levels were detected in 62 HCC tissue samples and paired pericarcinomatous specimens, and the human HCC cell lines SK-HEP-1, HepG2 and BEF-7402, by real-time PCR and immunohistochemistry. Experimental groups included eEF1A2 silencing in BEL-7402 cells with lentivirus eEF1A2-shRNA (KD group) and eEF1A2 overexpression in SK-HEP-1 cells with eEF1A2 plasmid (OE group). Non-transfected cells (control group) and lentivirus-based empty vector transfected cells (NC group) were considered control groups. Cell proliferation (MTT and colony formation assays), apoptosis (Annexin V-APC assay), cell cycle (DNA ploidy assay), and migration and invasion (Transwell assays) were assessed. Protein levels of PI3K/Akt/NF-κB signaling effectors were evaluated by Western blot.RESULTS: eEF1A2 mRNA and protein levels were significantly higher in HCC cancer tissue samples than in paired pericarcinomatous and normal specimens. SK-HEP-1 cells showed lower eEF1A2 mRNA levels; HepG2 and BEL-7402 cells showed higher eEF1A2 mRNA levels, with BEL-7402 cells displaying the highest amount. Efficient eEF1A2 silencing resulted in reduced cell proliferation, migration and invasion, increased apoptosis, and induced cell cycle arrest. The PI3K/Akt/NF-κB signaling pathway was notably inhibited. Inversely, eEF1A2 overexpression resulted in promoted cell proliferation, migration and invasion.CONCLUSION: eEF1A2, highly expressed in HCC, is a potential oncogene. Its silencing significantly decreases HCC tumorigenesis, likely by inhibiting PI3K/Akt/NF-κB signaling.展开更多
Objective To investigate the effects of Niuhuang(Bovis Calculus,BC)and Shexiang(Moschus)(BC-Moschus)on human hepatocellular carcinoma(HCC)cells SMMC-7721 and a nude mouse model of subcutaneous xenografts,and to explor...Objective To investigate the effects of Niuhuang(Bovis Calculus,BC)and Shexiang(Moschus)(BC-Moschus)on human hepatocellular carcinoma(HCC)cells SMMC-7721 and a nude mouse model of subcutaneous xenografts,and to explore its anti-HCC mechanism.Methods The BC-Moschus combination was applied to two liver cancer models in vivo and in vitro.SMMC-7721 was divided into the BC-Moschus group and the control group,and different doses(rude drug dosage 0.625,1.25,2.5,and 5 mg/m L)of BC-Moschus extract were used for the intervention.The proliferation ability of HCC cells was detected using the Cell Counting Kit-8(CCK-8)assay,and the migration ability was detected by a wound healing assay.A subcutaneous xenograft model was prepared using nude mice with human HCC.Specific pathogen-free-grade BALB/c nude mice(5-week-old)were randomly divided into the following groups(n=6 per group):control(0.9%physiological saline 0.2 m L/d),BC-Moschus[BC 45.5 mg/(kg·d)+Moschus 13 mg/(kg·d)],and cisplatin(DDP,intraperitoneal injection5 mg/kg per week)groups.All groups were administered for 14 d.The volume and mass of the subcutaneous xenografts in nude mice were observed.The expression levels of phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin(PI3K/AKT/mTOR)pathway,apoptosis-associated factor p70 S6 Kinase(S6K),Bax,Bcl-2,caspase-3,and caspase-9 in nude mice subcutaneous xenografts were measured by real-time quantitative PCR(RT-qPCR)and Western blot.Terminal Deoxynucleotidy Transferase-Mediated d UTP NickEnd Labeling(TUNEL)was used for quantitative analysis of apoptotic cells.Results The CCK-8 assay demonstrated that the BC-Moschus combination inhibited HCC cell proliferation in a superior manner to the use of BC and Moschus alone,and the inhibition effect was dose-and time-dependent(P<0.01).The wound healing assay showed that the BC-Moschus combination inhibited HCC cell migration(P<0.01).In the subcutaneous xenograft model of nude mice with human HCC,we found that the tumor volume and weight of the BC-Moschus group were lower than those of the control group(P<0.01).The levels of the PI3K/AKT/m TOR signaling pathway and S6K protein in the BC-Moschus and DDP groups were significantly decreased(P<0.01).The expression level of the anti-apoptotic gene Bcl-2 was downregulated(P<0.05),and the expression of the pro-apoptotic gene Baxand apoptosis-related factors caspase-3 and caspase-9 were significantly upregulated(P<0.01).The TUNEL assays further confirmed that the combination of the BC-Moschuas could promote HCC(P<0.01).Conclusion The BC-Moschus combination inhibited the proliferation and migration ability of HCC cells SMMC-7721 and effectively inhibited the growth of subcutaneous xenografts in nude mice.The mechanism may be closely related to the downregulation of the PI3K/AKT/mTOR pathway,regulation of apoptosis-related protein caspase-3,caspase-9,Bcl-2,and Bax expression,and promotion of apoptosis.展开更多
[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signal...[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein.展开更多
Due to its difficulty in early diagnosis and lack of sensitivity to chemotherapy and radiotherapy,renal cell carcinoma(RCC)remains to be a frequent cause of cancer-related death.Here,we probed into new targets for its ...Due to its difficulty in early diagnosis and lack of sensitivity to chemotherapy and radiotherapy,renal cell carcinoma(RCC)remains to be a frequent cause of cancer-related death.Here,we probed into new targets for its early diagnosis and treatment for RCC.microRNA(miRNA)data of M2-EVs and RCC were searched on the Gene Expression Omnibus database,followed by the prediction of the potential downstream target.Expression of target genes was measured via RT-qPCR and Western blot,respectively.M2 macrophage was obtained viaflow cytometry with M2-EVs extracted.The binding ability of miR-342-3p to NEDD4L and to CEP55 ubiquitination was studied with their roles in the physical abilities of RCC cells assayed.Subcutaneous tumor-bearing mouse models and lung metastasis models were prepared to observe in vivo role of target genes.M2-EVs induced RCC growth and metastasis.miR-342-3p showed high expression in both M2-EVs and RCC cells.M2-EVs carrying miR-342-3p promoted RCC cell abilities to proliferate,invade and migrate.In RCC cells,M2-EV-derived miR-342-3p could specifically bind to NEDD4L and consequently elevate CEP55 protein expression via suppressing NEDD4L,thereby exerting tumor-promoting effects.CEP55 could be degraded by ubiquitination under the function of NEDD4L,and miR-342-3p delivered by M2-EVs facilitated the RCC occurrence and development by activating the PI3K/AKT/mTOR signaling pathway.In conclusion,M2-EVs promote RCC growth and metastasis by delivering miR-342-3p to suppress NEDD4L and subsequently inhibit CEP55 ubiquitination and degradation via activation of the PI3K/AKT/mTOR signaling pathway,strongly driving the proliferative,migratory and invasive of RCC cells.展开更多
Epilepsy is a chronic and severe neurological disorder that has negative effects on the autonomous activities of patients. Functionally, Trem2(triggering receptor expressed on myeloid cells-2) is an immunoglobulin rec...Epilepsy is a chronic and severe neurological disorder that has negative effects on the autonomous activities of patients. Functionally, Trem2(triggering receptor expressed on myeloid cells-2) is an immunoglobulin receptor that affects neurological and psychiatric genetic diseases. Based on this rationale, we aimed to assess the potential role of Trem2 integration with the PI3 K/Akt pathway in epilepsy. We used microarray-based gene expression profiling to identify epilepsy-related differentially-expressed genes. In a mouse hippocampal neuron model of epilepsy, neurons were treated with lowMg^2+ extracellular fluid, and the protein and mRNA expression of Trem2 were determined. Using a gain-offunction approach with Trem2, neuronal apoptosis and its related factors were assessed by flow cytometry, RT-qPCR,and Western blot analysis. In a pilocarpine-induced epileptic mouse model, the malondialdehyde(MDA) and8-hydroxy-20-deoxyguanosine(8-OHdG) content and superoxide dismutase(SOD) and glutathione-peroxidase(GSH-Px) activity in the hippocampus were determined,and the protein expression of Trem2 was measured. In addition, the regulatory effect of Trem2 on the PI3 K/Akt pathway was analyzed by inhibiting this pathway in both the cell and mouse models of epilepsy. Trem2 was found to occupy a core position and was correlated with epilepsy.Trem2 was decreased in the hippocampus of epileptic miceand epileptic hippocampal neurons. Of crucial importance,overexpression of Trem2 activated the PI3 K/Akt pathway to inhibit neuronal apoptosis. Moreover, activation of the PI3 K/Akt pathway through over-expression of Trem2 alleviated oxidative stress, as shown by the increased expression of SOD and GSH-Px and the decreased expression of MDA and 8-OHdG. The current study defines the potential role of Trem2 in inhibiting the development of epilepsy, indicating that Trem2 up-regulation alleviates hippocampal neuronal injury and oxidative stress, and inhibits neuronal apoptosis in epilepsy by activating the PI3 K/Akt pathway.展开更多
Background Transient sublethal ischemia is known as ischemic preconditioning, which enables cells and tissues to survive subsequent prolonged lethal ischemic injury. Ischemic preconditioning exerts neuroprotection thr...Background Transient sublethal ischemia is known as ischemic preconditioning, which enables cells and tissues to survive subsequent prolonged lethal ischemic injury. Ischemic preconditioning exerts neuroprotection through phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Cbl-b belongs to the Casitas B-lineage lymphoma (Cbl) family, and it can regulate the cell signal transduction.The roles of ubiquitin ligase Cbl-b and PI3K/Akt pathway and the relationship between them in oxygen-glucose deprivation preconditioninq (OGDPC) in PC12 cells were investiaated in the ore.~e.nt study展开更多
The aim of the present study was to investigate the protective effects and underlying mechanisms of Garcinia xanthochymus, a perennial medicinal plant native to Yunnan, China, against H2 O2-induced oxidative damage in...The aim of the present study was to investigate the protective effects and underlying mechanisms of Garcinia xanthochymus, a perennial medicinal plant native to Yunnan, China, against H2 O2-induced oxidative damage in rat pheochromacytoma PC12 cells. Preincubation of PC12 cells with fruit Et OAc fraction(fruit-EFr., 12.5–50 μmol·L^(-1)) of G. xanthochymus for 24 h prior to H_2O_2 exposure markedly improved cell viability and increased the activities of antioxidant enzymes(superoxide dismutase, catalase, and heme oxygenase-1 [HO-1]), prevented lactate dehydrogenase release and lipid peroxidation malondialdehyde production, attenuated the decrease of matrix metalloproteinases(MMP), and scavenged reactive oxygen species(ROS). Fruit-EFr. also reduced BAX and cytochrome C expression and improved BCL-2 expression, thereby decreasing the ratio of BAX to BCL-2. Fruit-EFr. activated the nuclear translocation of NRF2 to increase HO-1 and induced the phosphorylation of AKT. Its cytoprotective effect was abolished by LY294002, a specific inhibitor of PI3 K. Taken together, the above findings suggested that fruit-EFr.of G. xanthochymus could enhance cellular antioxidant defense capacity, at least in part, through upregulating HO-1 expression and activating the PI3 K/AKT pathway and that it could suppress H_2O_2-induced oxidative damage via PI3 K/AKT and NRF2/HO-1 signaling pathways.展开更多
Rosmarinic acid(RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in...Rosmarinic acid(RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in CD-1 mice(Beijing Vital River Laboratory Animal Technology, Beijing, China) by occluding the right middle cerebral artery for 1 hour and allowing reperfusion for 24 hours. After intraperitoneally injecting model mice with 10, 20, or 40 mg/kg RA, functional neurological deficits were evaluated using modified Longa scores. Subsequently, cerebral infarct volume was measured using TTC staining and ischemic brain tissue was examined for cell apoptosis with TUNEL staining. Superoxide dismutase activity and malondialdehyde levels were measured by spectrophometry. Expression of heme oxygenase-1(HO-1), nuclear factor erythroid 2-related factor 2(Nrf2), Bcl-2, Bax, Akt, and phospho-Ser473 Akt proteins in ischemic brain tissue was detected by western blot, while mRNA levels of Nrf2, HO-1, Bcl-2, and Bax were analyzed using real time quantitative PCR. In addition, HO-1 enzyme activity was measured spectrophotometrically. RA(20 and 40 mg/kg) greatly improved neurological function, reduced infarct volume, decreased cell apoptosis, upregulated Bcl-2 protein and mRNA expression, downregulated Bax protein and mRNA expression, increased HO-1 and Nrf2 protein and mRNA expression, increased superoxide dismutase activity, and decreased malondialdehyde levels in ischemic brain tissue of model mice. However, intraperitoneal injection of a HO-1 inhibitor(10 mg/kg zinc protoporphyrin IX) reversed the neuroprotective effects of RA on HO-1 enzyme activity and Bcl-2 and Bax protein expression. The PI3 K/Akt signaling pathway inhibitor LY294002(10 mM) inhibited Akt phosphorylation, as well as Nrf2 and HO-1 expression. Our findings suggest that RA has anti-oxidative and anti-apoptotic properties that protect against ischemic stroke by a mechanism involving upregulation of Nrf2 and HO-1 expression via the PI3 K/Akt signaling pathway.展开更多
We demonstrate that Mycobacterium tuberculosis recombinant leucine-responsive regulatory protein (rLrp) inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-a), interleukin-6, and interleuk...We demonstrate that Mycobacterium tuberculosis recombinant leucine-responsive regulatory protein (rLrp) inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-a), interleukin-6, and interleukin-12 production and blocks the nuclear translocation of subunits of the nuclear-receptor transcription factor NF-KB (Nuclear factor-kappa B). Moreover, rLrp attenuated LPS-induced DNA binding and NF-κB transcriptional activity, which was accompanied by the degradation of inhibitory IκBα and a consequent decrease in the nuclear translocation of the NF-κB p65 subunit. RLrp interfered with the LPS-induced clustering of TNF receptor-associated factor 6 and with interleukin-1 receptor-associated kinase 1 binding to TAKI. Furthermore, rLrp did not attenuate proinflammatory cytokines or the expression of CD86 and major histocompatibility complex class-II induced by interferon-gamma in the macrophages of Toll-like receptor 2 deletion (TLR2-/-) mice and in protein kinase b (Akt)-depleted mouse cells, indicating that the inhibitory effects of rLrp were dependent on TLR2-mediated activation of the phosphatidylinositol 3-OH kinase (PI3K)/ Akt pathway. RLrp could also activate the PI3K/Akt pathway by stimulating the rapid phosphorylation of PI3K, Akt, and glycogen synthase kinase 3 beta in macrophages. In addition, 19 amino acid residues in the N-terminus of rLrp were determined to be important and required for the inhibitory effects mediated by TLR2. The inhibitory function of these 19 amino acids of rLrp raises the possibility that mimetic inhibitory peptides could be used to restrict innate immune responses in situations in which prolonged TLR signaling has deleterious effects. Our study offers new insight into the inhibitory mechanisms by which the TLR2-mediated PI3K/Akt pathway ensures the transient expression of potent inflammatory mediators.展开更多
Portal hypertension(PHT) is an important consequence of liver cirrhosis, which can lead to complications that adversely affect a patient's quality of life and survival, such as upper gastrointestinal bleeding, asc...Portal hypertension(PHT) is an important consequence of liver cirrhosis, which can lead to complications that adversely affect a patient's quality of life and survival, such as upper gastrointestinal bleeding, ascites, and portosystemic encephalopathy. In recent years, advances in molecular biology have led to major discoveries in the pathological processes of PHT, including the signaling pathways that may be involved: PI3 K-AKT-mTOR, RhoA/Rho-kinase, JAK2/STAT3, and farnesoid X receptor. However, the pathogenesis of PHT is complex and there are numerous pathways involved. Therefore, the targeting of signaling pathways for medical management is lagging. This article summarizes the progress that has been made in understanding the signaling pathways in PHT, and provides ideas for treatment of the disorder.展开更多
Hepatocellular carcinoma(HCC) is one of the leading causes of cancer-related death worldwide. It is associated with a poor prognosis and has limited treatment options. Sorafenib, a multi-targeted kinase inhibitor, is ...Hepatocellular carcinoma(HCC) is one of the leading causes of cancer-related death worldwide. It is associated with a poor prognosis and has limited treatment options. Sorafenib, a multi-targeted kinase inhibitor, is the only available systemic agent for treatment of HCC that improves overall survival for patients with advanced stage disease; unfortunately, an effective second-line agent for the treatment of progressive or sorafenib-resistant HCC has yet to be identified. This review focuses on components of the mammalian target of rapamycin(mTOR) pathway, its role in HCC pathogenesis, and dual mTOR inhibition as a therapeutic option with potential efficacy in advanced HCC. There are several important upstream and downstream signals in the mTOR pathway, and alternative tumor-promoting pathways are known to exist beyond mTORC1 inhibition in HCC. This review analyzes the relationships of the upstream and downstream regulators of mTORC1 and mTORC2 signaling; it also provides a comprehensive global picture of the interaction between mTORC1 and mTORC2 which demonstrates the pre-clinical relevance of the mTOR pathway in HCC pathogenesis and progression. Finally, it provides scientific rationale for dual mTORC1 and mTORC2 inhibition in the treatment of HCC. Clinical trials utilizing mTORC1 inhibitors and dual mTOR inhibitors in HCC are discussed as well. The mTOR pathway is comprised of two main components, mTORC1 and mTORC2; each has a unique role in the pathogenesis and progression of HCC. In phase Ⅲ studies, mTORC1 inhibitors demonstrate anti-tumor ac-tivity in advanced HCC, but dual mTOR(mTORC1 and mTORC2) inhibition has greater therapeutic potential in HCC treatment which warrants further clinical investigation.展开更多
Nasopharyngeal carcinoma(NPC)is the most prevalent human primary malignancy of the head and neck,and the presence of vasculogenic mimicry(VM)renders anti-angiogenic therapy ineffective and poorly prognostic.However,th...Nasopharyngeal carcinoma(NPC)is the most prevalent human primary malignancy of the head and neck,and the presence of vasculogenic mimicry(VM)renders anti-angiogenic therapy ineffective and poorly prognostic.However,the underlying mechanisms are unclear.In the present study,we used miR-940 silencing and overexpression for in vitro NPC cell EdU staining,wound healing assay and 3D cell culture assay,and in vivo xenograft mouse model and VM formation to assess miR-940 function.We found that ectopic miR-940 expression reduced NPC cell proliferation,migration and VM,as well as tumorigenesis in vivo.By bioinformatic analysis,circMAN1A2 was identified as a circRNA that binds to miR-940.Mechanistically,we confirmed that circMAN1A2 acts as a sponge for miR-940,impairs the inhibitory effect of miR-940 on target ERBB2,and then activates the PI3K/AKT/mTOR signaling pathway using RNA-FISH,dual luciferase reporter gene and rescue analysis assays.In addition,upregulation of ERBB2 expression is associated with clinical staging and poor prognosis of NPC.Taken together,the present findings suggest that circMAN1A2 promotes VM formation and progression of NPC through miR-940/ERBB2 axis and further activates the PI3K/AKT/mTOR pathway.Therefore,circMAN1A2 may become a biomarker and therapeutic target for anti-angiogenic therapy in patients with nasopharyngeal carcinoma.展开更多
Subject Code:H16With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Xiao Zhixiong(肖智雄)from the College of Life Science,Sichuan University de...Subject Code:H16With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Xiao Zhixiong(肖智雄)from the College of Life Science,Sichuan University demonstrates thatΔNp63αis a common inhibitory target in oncogenic PI3K/Ras/Her2-induced展开更多
Background As a rapid-progressing tumor,breast malignant phyllodes tumors(PTs)are challenged by the lack of effective therapeutic strategies and suitable prognostic markers.This study aimed to clarify the role and mec...Background As a rapid-progressing tumor,breast malignant phyllodes tumors(PTs)are challenged by the lack of effective therapeutic strategies and suitable prognostic markers.This study aimed to clarify the role and mechanism of CD146 on promoting PTs malignant progression,and to identify a novel prognosis marker and treatment target of breast malignant PTs.Methods The expression and prognostic significance of CD146 in PTs was detected through single-cell RNA-sequencing(scRNA-seq),immunostaining,real-time PCR and other methodologies.Functional experiments including proliferation assay,colony formation assay,transwell assay,and collagen contraction assay were conducted to validate the role of CD146 in malignant progression of PTs.The efficacy of anti-CD146 monoclonal antibody AA98 against malignant PTs was corroborated by a malignant PT organoid model and a PT patient-derived xenograft(PDX)model.Transcriptome sequencing,proteomic analysis,co-immunoprecipitation,and pull-down assay was employed to identify the modulating pathway and additional molecular mechanism.Results In this study,the scRNA-seq analysis of PTs disclosed a CD146-positive characteristic in theα-SMA+fibroblast subset.Furthermore,a progressive elevation in the level of CD146 was observed with the malignant progression of PTs.More importantly,CD146 was found to serve as an independent predictor for recurrence in PT patients.Furthermore,CD146 was found to augment the viability and invasion of PTs.Mechanistically,CD146 acted as a protective“shield”to prevent the degradation of Discoidin,CUB,and LCCL domain-containing protein 2(DCBLD2),thereby activating the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway and enhancing malignant behaviors of PT cells.In the malignant PT organoid and PDX model,a significant suppression of malignant PT growth was observed after the application of AA98.Conclusions These findings suggested that CD146 served as an efficacious marker for predicting PT malignant progression and showed promise as a prognosis marker and treatment target of breast malignant PTs.The study further unveiled the essential role of the CD146-DCBLD2/PI3K/AKT axis in the malignant progression of PTs.展开更多
Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and af...Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.展开更多
基金funded by the National Key Research and Development Program of China(2020YFD0900902)Zhejiang Province Public Welfare Technology Application Research Project(LGJ21C20001)Zhejiang Provincial Key Research and Development Project of China(2019C02076 and 2019C02075)。
文摘Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.
基金supported by the Chongqing Science and Technology CommitteeNatural Science Foundation of Chongqing,No.cstc2021jcyj-msxmX0065 (to YL)。
文摘Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.
基金This work was supported by the National Natural Science Foundation of China(Grant Numbers 31971106,BWS21L013,21WS09002,JK20211A010213).
文摘Background:Oral squamous cell carcinoma(OSCC)is a common malignant tumor.Recently,Laminin Gamma 2(LAMC2)has been shown to be abnormally expressed in OSCC;however,how LAMC2 signaling contributes to the occurrence and development of OSCC and the role of autophagy in OSCC has not been fully explored.This study aimed to analyze the role and mechanism of LAMC2 signaling in OSCC and the involvement of autophagy in OSCC.Methods:To explore the mechanism by which LAMC2 is highly expressed in OSCC,we used small interfering RNA(siRNA)to knock down LAMC2 to further observe the changes in the signaling pathway.Furthermore,we used cell proliferation assays,Transwell invasion assays,and wound-healing assays to observe the changes in OSCC proliferation,invasion,and metastasis.RFP-LC3 was used to detect the level of autophagy intensity.A cell line-derived xenograft(CDX)model was used to detect the effect of LAMC2 on tumor growth in vivo.Results:This study found that the level of autophagy was correlated with the biological behavior of OSCC.The downregulation of LAMC2 activated autophagy and inhibited OSCC proliferation,invasion,and metastasis via inhibiting the PI3K/AKT/mTOR pathway.Moreover,autophagy has a dual effect on OSCC,and the synergistic downregulation of LAMC2 and autophagy can inhibit OSCC metastasis,invasion,and proliferation via the PI3K/AKT/mTOR pathway.Conclusions:LAMC2 interacts with autophagy to regulate OSCC metastasis,invasion,and proliferation via the PI3K/AKT/mTOR pathway.LAMC2 down-regulation can synergistically modulate autophagy to inhibit OSCC migration,invasion,and proliferation.
基金supported by grants from the National Natural Sciences Foundation of China(No.30770914No.30901587)China State Key Basic Research Program(No.2002CB513100)
文摘This study was designed to determine the impact of chrysoeriol on proliferation and cell cycle progression in the human multiple myeloma cell lines RPMI 8226 and KM3,and its related molecular mechanisms.Chryseoriol was identified by using the phosphorylated AKT-specific cytoblot high throughput assay.CCK-8 assay was employed to examine the growth inhibition rate and IC 50 (48 h) in peripheral blood mononuclear cells (PBMNCs),RPMI 8226 and KM3 cells treated with chrysoeriol at various concentrations.Cells were labeled with 5-6-carboxyfluorescein diacetate succinimidyl ester (CFSE),and the proliferation dynamics was detected by flow cytometry and analyzed with ModFit software.The cell cycles of RPMI 8226 and KM3 cells were measured by flow cytometry when the IC 50 concentration of chrysoeriol was adopted.The alterations in cell-cycle related proteins (Cyclin B1,Cyclin D1,p21) and proteins in PI3K-AKT-mTOR pathway were determined by Western blot analysis.The results showed the proliferation of multiple myeloma cells was significantly inhibited by chrysoeriol,resulting in cell cycle arrest in G 2 /M phase.Chrysoeriol could significantly reduce the expression of p-AKT (s473) and p-4eBP1 (t37/46) protein,meanwhile enhanced Cyclin B1 and p21 protein expression.Similar effects were not observed in PBMNCs from normal donors.It was concluded that chrysoeriol was a selective PI3K-AKT-mTOR pathway inhibitor.It restrained the proliferation of human multiple myeloma cells,but didn’t affect proliferation of PBMNCs from normal donors.It might exhibit the cell cycle regulatory effect via the inhibition of PI3K-AKT-mTOR signal pathway.
基金Supported by the Middle-Young Age Backbone Talent Cultivation Program of Fujian Health System,No.2013-ZQNJC-2Key Projects of Science and Technology Plan of Fujian Province,No.2014Y0009
文摘AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eEF1A2 levels were detected in 62 HCC tissue samples and paired pericarcinomatous specimens, and the human HCC cell lines SK-HEP-1, HepG2 and BEF-7402, by real-time PCR and immunohistochemistry. Experimental groups included eEF1A2 silencing in BEL-7402 cells with lentivirus eEF1A2-shRNA (KD group) and eEF1A2 overexpression in SK-HEP-1 cells with eEF1A2 plasmid (OE group). Non-transfected cells (control group) and lentivirus-based empty vector transfected cells (NC group) were considered control groups. Cell proliferation (MTT and colony formation assays), apoptosis (Annexin V-APC assay), cell cycle (DNA ploidy assay), and migration and invasion (Transwell assays) were assessed. Protein levels of PI3K/Akt/NF-κB signaling effectors were evaluated by Western blot.RESULTS: eEF1A2 mRNA and protein levels were significantly higher in HCC cancer tissue samples than in paired pericarcinomatous and normal specimens. SK-HEP-1 cells showed lower eEF1A2 mRNA levels; HepG2 and BEL-7402 cells showed higher eEF1A2 mRNA levels, with BEL-7402 cells displaying the highest amount. Efficient eEF1A2 silencing resulted in reduced cell proliferation, migration and invasion, increased apoptosis, and induced cell cycle arrest. The PI3K/Akt/NF-κB signaling pathway was notably inhibited. Inversely, eEF1A2 overexpression resulted in promoted cell proliferation, migration and invasion.CONCLUSION: eEF1A2, highly expressed in HCC, is a potential oncogene. Its silencing significantly decreases HCC tumorigenesis, likely by inhibiting PI3K/Akt/NF-κB signaling.
基金National Natural Science Foundation of China(81473617)Natural Science Foundation of Hunan Province(2020JJ4066)+1 种基金Scientific Research Project of Hunan Education Department(18A266)Hunan Graduate Scientific Research Innovation Project(QL20210173)。
文摘Objective To investigate the effects of Niuhuang(Bovis Calculus,BC)and Shexiang(Moschus)(BC-Moschus)on human hepatocellular carcinoma(HCC)cells SMMC-7721 and a nude mouse model of subcutaneous xenografts,and to explore its anti-HCC mechanism.Methods The BC-Moschus combination was applied to two liver cancer models in vivo and in vitro.SMMC-7721 was divided into the BC-Moschus group and the control group,and different doses(rude drug dosage 0.625,1.25,2.5,and 5 mg/m L)of BC-Moschus extract were used for the intervention.The proliferation ability of HCC cells was detected using the Cell Counting Kit-8(CCK-8)assay,and the migration ability was detected by a wound healing assay.A subcutaneous xenograft model was prepared using nude mice with human HCC.Specific pathogen-free-grade BALB/c nude mice(5-week-old)were randomly divided into the following groups(n=6 per group):control(0.9%physiological saline 0.2 m L/d),BC-Moschus[BC 45.5 mg/(kg·d)+Moschus 13 mg/(kg·d)],and cisplatin(DDP,intraperitoneal injection5 mg/kg per week)groups.All groups were administered for 14 d.The volume and mass of the subcutaneous xenografts in nude mice were observed.The expression levels of phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin(PI3K/AKT/mTOR)pathway,apoptosis-associated factor p70 S6 Kinase(S6K),Bax,Bcl-2,caspase-3,and caspase-9 in nude mice subcutaneous xenografts were measured by real-time quantitative PCR(RT-qPCR)and Western blot.Terminal Deoxynucleotidy Transferase-Mediated d UTP NickEnd Labeling(TUNEL)was used for quantitative analysis of apoptotic cells.Results The CCK-8 assay demonstrated that the BC-Moschus combination inhibited HCC cell proliferation in a superior manner to the use of BC and Moschus alone,and the inhibition effect was dose-and time-dependent(P<0.01).The wound healing assay showed that the BC-Moschus combination inhibited HCC cell migration(P<0.01).In the subcutaneous xenograft model of nude mice with human HCC,we found that the tumor volume and weight of the BC-Moschus group were lower than those of the control group(P<0.01).The levels of the PI3K/AKT/m TOR signaling pathway and S6K protein in the BC-Moschus and DDP groups were significantly decreased(P<0.01).The expression level of the anti-apoptotic gene Bcl-2 was downregulated(P<0.05),and the expression of the pro-apoptotic gene Baxand apoptosis-related factors caspase-3 and caspase-9 were significantly upregulated(P<0.01).The TUNEL assays further confirmed that the combination of the BC-Moschuas could promote HCC(P<0.01).Conclusion The BC-Moschus combination inhibited the proliferation and migration ability of HCC cells SMMC-7721 and effectively inhibited the growth of subcutaneous xenografts in nude mice.The mechanism may be closely related to the downregulation of the PI3K/AKT/mTOR pathway,regulation of apoptosis-related protein caspase-3,caspase-9,Bcl-2,and Bax expression,and promotion of apoptosis.
基金Supported by National Natural Science Foundation of China(81760806)Project of Traditional Chinese Medicine Administration of Gansu Province(GZK-2019-28)Innovation Ability Improvement Project of Higher Education Institutions of Gansu Province(2019B-103)。
文摘[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein.
基金supported by the Science and Technology Department of Sichuan Province(2015SZ0117,2019YJ0701,and 2021YJ0239).
文摘Due to its difficulty in early diagnosis and lack of sensitivity to chemotherapy and radiotherapy,renal cell carcinoma(RCC)remains to be a frequent cause of cancer-related death.Here,we probed into new targets for its early diagnosis and treatment for RCC.microRNA(miRNA)data of M2-EVs and RCC were searched on the Gene Expression Omnibus database,followed by the prediction of the potential downstream target.Expression of target genes was measured via RT-qPCR and Western blot,respectively.M2 macrophage was obtained viaflow cytometry with M2-EVs extracted.The binding ability of miR-342-3p to NEDD4L and to CEP55 ubiquitination was studied with their roles in the physical abilities of RCC cells assayed.Subcutaneous tumor-bearing mouse models and lung metastasis models were prepared to observe in vivo role of target genes.M2-EVs induced RCC growth and metastasis.miR-342-3p showed high expression in both M2-EVs and RCC cells.M2-EVs carrying miR-342-3p promoted RCC cell abilities to proliferate,invade and migrate.In RCC cells,M2-EV-derived miR-342-3p could specifically bind to NEDD4L and consequently elevate CEP55 protein expression via suppressing NEDD4L,thereby exerting tumor-promoting effects.CEP55 could be degraded by ubiquitination under the function of NEDD4L,and miR-342-3p delivered by M2-EVs facilitated the RCC occurrence and development by activating the PI3K/AKT/mTOR signaling pathway.In conclusion,M2-EVs promote RCC growth and metastasis by delivering miR-342-3p to suppress NEDD4L and subsequently inhibit CEP55 ubiquitination and degradation via activation of the PI3K/AKT/mTOR signaling pathway,strongly driving the proliferative,migratory and invasive of RCC cells.
基金supported by Beijing Key Laboratory of Neuromodulation(BZ0098)the Precision Medicine Project of the Ministry of Science and Technology of China(2016YFC0904400)
文摘Epilepsy is a chronic and severe neurological disorder that has negative effects on the autonomous activities of patients. Functionally, Trem2(triggering receptor expressed on myeloid cells-2) is an immunoglobulin receptor that affects neurological and psychiatric genetic diseases. Based on this rationale, we aimed to assess the potential role of Trem2 integration with the PI3 K/Akt pathway in epilepsy. We used microarray-based gene expression profiling to identify epilepsy-related differentially-expressed genes. In a mouse hippocampal neuron model of epilepsy, neurons were treated with lowMg^2+ extracellular fluid, and the protein and mRNA expression of Trem2 were determined. Using a gain-offunction approach with Trem2, neuronal apoptosis and its related factors were assessed by flow cytometry, RT-qPCR,and Western blot analysis. In a pilocarpine-induced epileptic mouse model, the malondialdehyde(MDA) and8-hydroxy-20-deoxyguanosine(8-OHdG) content and superoxide dismutase(SOD) and glutathione-peroxidase(GSH-Px) activity in the hippocampus were determined,and the protein expression of Trem2 was measured. In addition, the regulatory effect of Trem2 on the PI3 K/Akt pathway was analyzed by inhibiting this pathway in both the cell and mouse models of epilepsy. Trem2 was found to occupy a core position and was correlated with epilepsy.Trem2 was decreased in the hippocampus of epileptic miceand epileptic hippocampal neurons. Of crucial importance,overexpression of Trem2 activated the PI3 K/Akt pathway to inhibit neuronal apoptosis. Moreover, activation of the PI3 K/Akt pathway through over-expression of Trem2 alleviated oxidative stress, as shown by the increased expression of SOD and GSH-Px and the decreased expression of MDA and 8-OHdG. The current study defines the potential role of Trem2 in inhibiting the development of epilepsy, indicating that Trem2 up-regulation alleviates hippocampal neuronal injury and oxidative stress, and inhibits neuronal apoptosis in epilepsy by activating the PI3 K/Akt pathway.
文摘Background Transient sublethal ischemia is known as ischemic preconditioning, which enables cells and tissues to survive subsequent prolonged lethal ischemic injury. Ischemic preconditioning exerts neuroprotection through phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Cbl-b belongs to the Casitas B-lineage lymphoma (Cbl) family, and it can regulate the cell signal transduction.The roles of ubiquitin ligase Cbl-b and PI3K/Akt pathway and the relationship between them in oxygen-glucose deprivation preconditioninq (OGDPC) in PC12 cells were investiaated in the ore.~e.nt study
基金supported by the National Natural Science Foundation of China(No.31370379)the National Natural Science Foundation Youth Project Financing(No.81201610)+1 种基金State Ethnic Affairs Commission Research Project(No.CMZY13012)Universities of Hubei Province Outstanding Youth Scientific Innovation Team Plan(No.T201220)
文摘The aim of the present study was to investigate the protective effects and underlying mechanisms of Garcinia xanthochymus, a perennial medicinal plant native to Yunnan, China, against H2 O2-induced oxidative damage in rat pheochromacytoma PC12 cells. Preincubation of PC12 cells with fruit Et OAc fraction(fruit-EFr., 12.5–50 μmol·L^(-1)) of G. xanthochymus for 24 h prior to H_2O_2 exposure markedly improved cell viability and increased the activities of antioxidant enzymes(superoxide dismutase, catalase, and heme oxygenase-1 [HO-1]), prevented lactate dehydrogenase release and lipid peroxidation malondialdehyde production, attenuated the decrease of matrix metalloproteinases(MMP), and scavenged reactive oxygen species(ROS). Fruit-EFr. also reduced BAX and cytochrome C expression and improved BCL-2 expression, thereby decreasing the ratio of BAX to BCL-2. Fruit-EFr. activated the nuclear translocation of NRF2 to increase HO-1 and induced the phosphorylation of AKT. Its cytoprotective effect was abolished by LY294002, a specific inhibitor of PI3 K. Taken together, the above findings suggested that fruit-EFr.of G. xanthochymus could enhance cellular antioxidant defense capacity, at least in part, through upregulating HO-1 expression and activating the PI3 K/AKT pathway and that it could suppress H_2O_2-induced oxidative damage via PI3 K/AKT and NRF2/HO-1 signaling pathways.
基金supported by the National Natural Science Foundation of China,No.81571292(to XJZ)、81601152(to YY)the Natural Science Foundation of Hebei Province of China,No.H2017206338(to RC)
文摘Rosmarinic acid(RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in CD-1 mice(Beijing Vital River Laboratory Animal Technology, Beijing, China) by occluding the right middle cerebral artery for 1 hour and allowing reperfusion for 24 hours. After intraperitoneally injecting model mice with 10, 20, or 40 mg/kg RA, functional neurological deficits were evaluated using modified Longa scores. Subsequently, cerebral infarct volume was measured using TTC staining and ischemic brain tissue was examined for cell apoptosis with TUNEL staining. Superoxide dismutase activity and malondialdehyde levels were measured by spectrophometry. Expression of heme oxygenase-1(HO-1), nuclear factor erythroid 2-related factor 2(Nrf2), Bcl-2, Bax, Akt, and phospho-Ser473 Akt proteins in ischemic brain tissue was detected by western blot, while mRNA levels of Nrf2, HO-1, Bcl-2, and Bax were analyzed using real time quantitative PCR. In addition, HO-1 enzyme activity was measured spectrophotometrically. RA(20 and 40 mg/kg) greatly improved neurological function, reduced infarct volume, decreased cell apoptosis, upregulated Bcl-2 protein and mRNA expression, downregulated Bax protein and mRNA expression, increased HO-1 and Nrf2 protein and mRNA expression, increased superoxide dismutase activity, and decreased malondialdehyde levels in ischemic brain tissue of model mice. However, intraperitoneal injection of a HO-1 inhibitor(10 mg/kg zinc protoporphyrin IX) reversed the neuroprotective effects of RA on HO-1 enzyme activity and Bcl-2 and Bax protein expression. The PI3 K/Akt signaling pathway inhibitor LY294002(10 mM) inhibited Akt phosphorylation, as well as Nrf2 and HO-1 expression. Our findings suggest that RA has anti-oxidative and anti-apoptotic properties that protect against ischemic stroke by a mechanism involving upregulation of Nrf2 and HO-1 expression via the PI3 K/Akt signaling pathway.
文摘We demonstrate that Mycobacterium tuberculosis recombinant leucine-responsive regulatory protein (rLrp) inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-a), interleukin-6, and interleukin-12 production and blocks the nuclear translocation of subunits of the nuclear-receptor transcription factor NF-KB (Nuclear factor-kappa B). Moreover, rLrp attenuated LPS-induced DNA binding and NF-κB transcriptional activity, which was accompanied by the degradation of inhibitory IκBα and a consequent decrease in the nuclear translocation of the NF-κB p65 subunit. RLrp interfered with the LPS-induced clustering of TNF receptor-associated factor 6 and with interleukin-1 receptor-associated kinase 1 binding to TAKI. Furthermore, rLrp did not attenuate proinflammatory cytokines or the expression of CD86 and major histocompatibility complex class-II induced by interferon-gamma in the macrophages of Toll-like receptor 2 deletion (TLR2-/-) mice and in protein kinase b (Akt)-depleted mouse cells, indicating that the inhibitory effects of rLrp were dependent on TLR2-mediated activation of the phosphatidylinositol 3-OH kinase (PI3K)/ Akt pathway. RLrp could also activate the PI3K/Akt pathway by stimulating the rapid phosphorylation of PI3K, Akt, and glycogen synthase kinase 3 beta in macrophages. In addition, 19 amino acid residues in the N-terminus of rLrp were determined to be important and required for the inhibitory effects mediated by TLR2. The inhibitory function of these 19 amino acids of rLrp raises the possibility that mimetic inhibitory peptides could be used to restrict innate immune responses in situations in which prolonged TLR signaling has deleterious effects. Our study offers new insight into the inhibitory mechanisms by which the TLR2-mediated PI3K/Akt pathway ensures the transient expression of potent inflammatory mediators.
基金Supported by the National Natural Science Foundation of China,No.81573948
文摘Portal hypertension(PHT) is an important consequence of liver cirrhosis, which can lead to complications that adversely affect a patient's quality of life and survival, such as upper gastrointestinal bleeding, ascites, and portosystemic encephalopathy. In recent years, advances in molecular biology have led to major discoveries in the pathological processes of PHT, including the signaling pathways that may be involved: PI3 K-AKT-mTOR, RhoA/Rho-kinase, JAK2/STAT3, and farnesoid X receptor. However, the pathogenesis of PHT is complex and there are numerous pathways involved. Therefore, the targeting of signaling pathways for medical management is lagging. This article summarizes the progress that has been made in understanding the signaling pathways in PHT, and provides ideas for treatment of the disorder.
文摘Hepatocellular carcinoma(HCC) is one of the leading causes of cancer-related death worldwide. It is associated with a poor prognosis and has limited treatment options. Sorafenib, a multi-targeted kinase inhibitor, is the only available systemic agent for treatment of HCC that improves overall survival for patients with advanced stage disease; unfortunately, an effective second-line agent for the treatment of progressive or sorafenib-resistant HCC has yet to be identified. This review focuses on components of the mammalian target of rapamycin(mTOR) pathway, its role in HCC pathogenesis, and dual mTOR inhibition as a therapeutic option with potential efficacy in advanced HCC. There are several important upstream and downstream signals in the mTOR pathway, and alternative tumor-promoting pathways are known to exist beyond mTORC1 inhibition in HCC. This review analyzes the relationships of the upstream and downstream regulators of mTORC1 and mTORC2 signaling; it also provides a comprehensive global picture of the interaction between mTORC1 and mTORC2 which demonstrates the pre-clinical relevance of the mTOR pathway in HCC pathogenesis and progression. Finally, it provides scientific rationale for dual mTORC1 and mTORC2 inhibition in the treatment of HCC. Clinical trials utilizing mTORC1 inhibitors and dual mTOR inhibitors in HCC are discussed as well. The mTOR pathway is comprised of two main components, mTORC1 and mTORC2; each has a unique role in the pathogenesis and progression of HCC. In phase Ⅲ studies, mTORC1 inhibitors demonstrate anti-tumor ac-tivity in advanced HCC, but dual mTOR(mTORC1 and mTORC2) inhibition has greater therapeutic potential in HCC treatment which warrants further clinical investigation.
基金supported by the National Natural Science Foundation of China(Grant No.81260348)the Key Research and Development Program of Guangxi(Grant No.GuiKe AB21196012).
文摘Nasopharyngeal carcinoma(NPC)is the most prevalent human primary malignancy of the head and neck,and the presence of vasculogenic mimicry(VM)renders anti-angiogenic therapy ineffective and poorly prognostic.However,the underlying mechanisms are unclear.In the present study,we used miR-940 silencing and overexpression for in vitro NPC cell EdU staining,wound healing assay and 3D cell culture assay,and in vivo xenograft mouse model and VM formation to assess miR-940 function.We found that ectopic miR-940 expression reduced NPC cell proliferation,migration and VM,as well as tumorigenesis in vivo.By bioinformatic analysis,circMAN1A2 was identified as a circRNA that binds to miR-940.Mechanistically,we confirmed that circMAN1A2 acts as a sponge for miR-940,impairs the inhibitory effect of miR-940 on target ERBB2,and then activates the PI3K/AKT/mTOR signaling pathway using RNA-FISH,dual luciferase reporter gene and rescue analysis assays.In addition,upregulation of ERBB2 expression is associated with clinical staging and poor prognosis of NPC.Taken together,the present findings suggest that circMAN1A2 promotes VM formation and progression of NPC through miR-940/ERBB2 axis and further activates the PI3K/AKT/mTOR pathway.Therefore,circMAN1A2 may become a biomarker and therapeutic target for anti-angiogenic therapy in patients with nasopharyngeal carcinoma.
文摘Subject Code:H16With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Xiao Zhixiong(肖智雄)from the College of Life Science,Sichuan University demonstrates thatΔNp63αis a common inhibitory target in oncogenic PI3K/Ras/Her2-induced
基金Natural Science Foundation of China.Grant Numbers:82173054,81621004,81720108029,82002782 Basic and Applied Basic Research Foundation of Guangdong Province.Grant Number:2022A1515110069 Strategic Priority Research Program of Chinese Academy of Sciences.Grant Number:XDB29040100 Guangdong Science and Technology Department.Grant Number:2022B1515020048 Clinical Innovation Research Program of Bioland Laboratory.Grant Number:2018GZR0201004 Guangzhou Science Technology and Innovation Commission.Grant Number:202102010148 Bureau of Science and Technology of Guangzhou.Grant Number:20212200003 Program for Guangdong Introducing Innovative and Enterpreneurial Teams.Grant Number:2019BT02Y198。
文摘Background As a rapid-progressing tumor,breast malignant phyllodes tumors(PTs)are challenged by the lack of effective therapeutic strategies and suitable prognostic markers.This study aimed to clarify the role and mechanism of CD146 on promoting PTs malignant progression,and to identify a novel prognosis marker and treatment target of breast malignant PTs.Methods The expression and prognostic significance of CD146 in PTs was detected through single-cell RNA-sequencing(scRNA-seq),immunostaining,real-time PCR and other methodologies.Functional experiments including proliferation assay,colony formation assay,transwell assay,and collagen contraction assay were conducted to validate the role of CD146 in malignant progression of PTs.The efficacy of anti-CD146 monoclonal antibody AA98 against malignant PTs was corroborated by a malignant PT organoid model and a PT patient-derived xenograft(PDX)model.Transcriptome sequencing,proteomic analysis,co-immunoprecipitation,and pull-down assay was employed to identify the modulating pathway and additional molecular mechanism.Results In this study,the scRNA-seq analysis of PTs disclosed a CD146-positive characteristic in theα-SMA+fibroblast subset.Furthermore,a progressive elevation in the level of CD146 was observed with the malignant progression of PTs.More importantly,CD146 was found to serve as an independent predictor for recurrence in PT patients.Furthermore,CD146 was found to augment the viability and invasion of PTs.Mechanistically,CD146 acted as a protective“shield”to prevent the degradation of Discoidin,CUB,and LCCL domain-containing protein 2(DCBLD2),thereby activating the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway and enhancing malignant behaviors of PT cells.In the malignant PT organoid and PDX model,a significant suppression of malignant PT growth was observed after the application of AA98.Conclusions These findings suggested that CD146 served as an efficacious marker for predicting PT malignant progression and showed promise as a prognosis marker and treatment target of breast malignant PTs.The study further unveiled the essential role of the CD146-DCBLD2/PI3K/AKT axis in the malignant progression of PTs.
基金supported by American Diabetes Association,American Heart Association,NIH NIEHS,NIH NIA,NIH NINDS,and NIH ARRA
文摘Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.