无拖曳控制是空间引力波探测的关键技术,主要由微型推力器完成。微型电子回旋共振离子推力器(ECRIT)体积小、推力可调,可用于空间引力波的无拖曳控制。基于三维PIC数值模拟方法计算微型2 cm ECRIT的推力控制范围,分析其用于无拖曳控制...无拖曳控制是空间引力波探测的关键技术,主要由微型推力器完成。微型电子回旋共振离子推力器(ECRIT)体积小、推力可调,可用于空间引力波的无拖曳控制。基于三维PIC数值模拟方法计算微型2 cm ECRIT的推力控制范围,分析其用于无拖曳控制系统的可行性。首先计算不同栅极孔径下的推力性能和栅极聚焦特性,获得合理栅极结构,再计算栅极电压、栅极前离子密度对推力器性能的影响,获得满足无拖曳控制要求的推力器性能参数范围。结果表明:减小栅极孔径能降低推力,但同时影响栅极聚焦效果;调节栅极前离子密度可大范围调节推力;在给定的栅极结构和栅前离子密度下,存在合适的栅极加速电压区间保证离子的良好聚焦。综合考虑推力性能和栅极聚焦特性,选择屏栅孔径0.6 mm、加速栅孔径0.34 mm的栅极,当栅极前离子密度分别为1×1017,0.7×1017,0.4×1017,0.2×1017 m-3时,通过调节加速电压,可实现5.05~141.44μN的推力调节。此研究将为分析ECRIT应用于引力波探测的可行性奠定基础。展开更多
地球同步轨道航天器在地磁亚暴环境下处于向光面和背光面的两侧会产生电位差。本文利用高能电子和高能离子的双麦克斯韦分布拟合同步轨道环境等离子体并加入二次电子和光电子的影响,建立了航天器的三维计算模型,利用基于PIC(Particle In...地球同步轨道航天器在地磁亚暴环境下处于向光面和背光面的两侧会产生电位差。本文利用高能电子和高能离子的双麦克斯韦分布拟合同步轨道环境等离子体并加入二次电子和光电子的影响,建立了航天器的三维计算模型,利用基于PIC(Particle In Cell)方法的仿真程序,计算了航天器表面各材料的充电电位及其附近的等离子体的电位分布,以及低能电子、高能电子、二次电子和光电子的密度分布和充电电流分布,最后探讨了航天器不同表面材料电势随时间的变化情况。展开更多
文摘地球同步轨道航天器在地磁亚暴环境下处于向光面和背光面的两侧会产生电位差。本文利用高能电子和高能离子的双麦克斯韦分布拟合同步轨道环境等离子体并加入二次电子和光电子的影响,建立了航天器的三维计算模型,利用基于PIC(Particle In Cell)方法的仿真程序,计算了航天器表面各材料的充电电位及其附近的等离子体的电位分布,以及低能电子、高能电子、二次电子和光电子的密度分布和充电电流分布,最后探讨了航天器不同表面材料电势随时间的变化情况。