Enlightened by distribution of creatures in natural ecology environment, the distributionpopulation-based genetic algorithm (DPGA) is presented in this paper. The searching capability ofthe algorithm is improved by co...Enlightened by distribution of creatures in natural ecology environment, the distributionpopulation-based genetic algorithm (DPGA) is presented in this paper. The searching capability ofthe algorithm is improved by competition between distribution populations to reduce the search zone.This method is applied to design of optimal parameters of PID controllers with examples, and thesimulation results show that satisfactory performances are obtained.展开更多
According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated ...According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated by MATLAB.As a result that it can improve the response speed and stability of the system,and meet the demand of the system.展开更多
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi...The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.展开更多
A new and intelligent design method for PID controller with incomplete derivation is proposed based on the ant system algorithm ( ASA) . For a given control system with this kind of PID controller, a group of optimal ...A new and intelligent design method for PID controller with incomplete derivation is proposed based on the ant system algorithm ( ASA) . For a given control system with this kind of PID controller, a group of optimal PID controller parameters K p * , T i * , and T d * can be obtained by taking the overshoot, settling time, and steady-state error of the system's unit step response as the performance indexes and by use of our improved ant system algorithm. K p * , T i * , and T d * can be used in real-time control. This kind of controller is called the ASA-PID controller with incomplete derivation. To verify the performance of the ASA-PID controller, three different typical transfer functions were tested, and three existing typical tuning methods of PID controller parameters, including the Ziegler-Nichols method (ZN),the genetic algorithm (GA),and the simulated annealing (SA), were adopted for comparison. The simulation results showed that the ASA-PID controller can be used to control different objects and has better performance compared with the ZN-PID and GA-PID controllers, and comparable performance compared with the SA-PID controller.展开更多
This paper delineates a conventional buck converter controlled by optimized PID controller where Genetic Algorithm (GA) is employed with a view to enhancing the performance by analyzing the performance parameters. Gen...This paper delineates a conventional buck converter controlled by optimized PID controller where Genetic Algorithm (GA) is employed with a view to enhancing the performance by analyzing the performance parameters. Genetic Algorithm is a probabilistic search algorithm which is substantially used as an optimization technique in power electronics. A bunch of modifications have already been introduced to enhance the performance depending upon the applications. However, in this paper, modified genetic algorithm has been used in order to tune the key parameters in the converter. Hence, an analysis is carried out where the performance of the converter is illustrated in terms of rise time, settling time and percentage of overshoot by deploying GA based PID controller and the overall comparative study is presented. Responses of the overall system are accumulated through rigorous simulation in MATLAB environment.展开更多
温度控制在生产生活中发挥着举足轻重的作用。位式控制算法在调节具有滞后性的水暖床垫温度控制系统时容易导致温度在目标值上下波动,控制效果不理想。为了解决此问题,设计了一种基于位置式PID的水暖床垫温度控制系统,系统以51内核的微...温度控制在生产生活中发挥着举足轻重的作用。位式控制算法在调节具有滞后性的水暖床垫温度控制系统时容易导致温度在目标值上下波动,控制效果不理想。为了解决此问题,设计了一种基于位置式PID的水暖床垫温度控制系统,系统以51内核的微处理器为核心控制器、以负温度系数热敏电阻(Negative Temperature Coefficient,NTC)为温度传感器、以PTC为加热器、以直流电机作为循环水泵。经实际测试结果表明,该系统运行稳定,控温精度在±0.5℃以内,达到了理想的温度控制效果。展开更多
针对鲸鱼优化算法易陷入局部最优以及无刷直流电机(brushless DC motor,BLDCM)速度控制响应慢、超调量大等缺点,提出一种改进鲸鱼优化算法(improve whale optimization algorithm,IWOA)优化PID(proportional integral derivative)参数...针对鲸鱼优化算法易陷入局部最优以及无刷直流电机(brushless DC motor,BLDCM)速度控制响应慢、超调量大等缺点,提出一种改进鲸鱼优化算法(improve whale optimization algorithm,IWOA)优化PID(proportional integral derivative)参数的无刷直流电机速度控制算法.该算法采用高斯变异因子、自适应权重因子和动态阈值相结合对鲸鱼优化算法进行优化.仿真实验结果表明,改进鲸鱼优化PID的无刷直流电机转速控制算法具有更快的收敛速度以及较小的超调现象,鲁棒性也更好.展开更多
文摘Enlightened by distribution of creatures in natural ecology environment, the distributionpopulation-based genetic algorithm (DPGA) is presented in this paper. The searching capability ofthe algorithm is improved by competition between distribution populations to reduce the search zone.This method is applied to design of optimal parameters of PID controllers with examples, and thesimulation results show that satisfactory performances are obtained.
基金supported by the Chongqing Scientific and Technological Innovating Program under grant CSTC2008AC1014
文摘According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated by MATLAB.As a result that it can improve the response speed and stability of the system,and meet the demand of the system.
基金Project(51090385) supported by the Major Program of National Natural Science Foundation of ChinaProject(2011IB001) supported by Yunnan Provincial Science and Technology Program,China+1 种基金Project(2012DFA70570) supported by the International Science & Technology Cooperation Program of ChinaProject(2011IA004) supported by the Yunnan Provincial International Cooperative Program,China
文摘The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.
基金This work was supported by the National Natural Science Foundation of China (No. 50275150)the Foundation of Robotics Laboratory, Chinese Academy of Sciences( No. RL200002).
文摘A new and intelligent design method for PID controller with incomplete derivation is proposed based on the ant system algorithm ( ASA) . For a given control system with this kind of PID controller, a group of optimal PID controller parameters K p * , T i * , and T d * can be obtained by taking the overshoot, settling time, and steady-state error of the system's unit step response as the performance indexes and by use of our improved ant system algorithm. K p * , T i * , and T d * can be used in real-time control. This kind of controller is called the ASA-PID controller with incomplete derivation. To verify the performance of the ASA-PID controller, three different typical transfer functions were tested, and three existing typical tuning methods of PID controller parameters, including the Ziegler-Nichols method (ZN),the genetic algorithm (GA),and the simulated annealing (SA), were adopted for comparison. The simulation results showed that the ASA-PID controller can be used to control different objects and has better performance compared with the ZN-PID and GA-PID controllers, and comparable performance compared with the SA-PID controller.
文摘This paper delineates a conventional buck converter controlled by optimized PID controller where Genetic Algorithm (GA) is employed with a view to enhancing the performance by analyzing the performance parameters. Genetic Algorithm is a probabilistic search algorithm which is substantially used as an optimization technique in power electronics. A bunch of modifications have already been introduced to enhance the performance depending upon the applications. However, in this paper, modified genetic algorithm has been used in order to tune the key parameters in the converter. Hence, an analysis is carried out where the performance of the converter is illustrated in terms of rise time, settling time and percentage of overshoot by deploying GA based PID controller and the overall comparative study is presented. Responses of the overall system are accumulated through rigorous simulation in MATLAB environment.
文摘温度控制在生产生活中发挥着举足轻重的作用。位式控制算法在调节具有滞后性的水暖床垫温度控制系统时容易导致温度在目标值上下波动,控制效果不理想。为了解决此问题,设计了一种基于位置式PID的水暖床垫温度控制系统,系统以51内核的微处理器为核心控制器、以负温度系数热敏电阻(Negative Temperature Coefficient,NTC)为温度传感器、以PTC为加热器、以直流电机作为循环水泵。经实际测试结果表明,该系统运行稳定,控温精度在±0.5℃以内,达到了理想的温度控制效果。
文摘针对鲸鱼优化算法易陷入局部最优以及无刷直流电机(brushless DC motor,BLDCM)速度控制响应慢、超调量大等缺点,提出一种改进鲸鱼优化算法(improve whale optimization algorithm,IWOA)优化PID(proportional integral derivative)参数的无刷直流电机速度控制算法.该算法采用高斯变异因子、自适应权重因子和动态阈值相结合对鲸鱼优化算法进行优化.仿真实验结果表明,改进鲸鱼优化PID的无刷直流电机转速控制算法具有更快的收敛速度以及较小的超调现象,鲁棒性也更好.