Automatic voltage regulators(AVR)are designed to manipulate a synchronous generator’s voltage level automatically.Proportional integral derivative(PID)controllers are typically used in AVR systems to regulate voltage...Automatic voltage regulators(AVR)are designed to manipulate a synchronous generator’s voltage level automatically.Proportional integral derivative(PID)controllers are typically used in AVR systems to regulate voltage.Although advanced PID tuning methods have been proposed,the actual voltage response differs from the theoretical predictions due to modeling errors and system uncertainties.This requires continuous fine tuning of the PID parameters.However,manual adjustment of these parameters can compromise the stability and robustness of the AVR system.This study focuses on the online self-tuning of PID controllers called indirect design approach-2(IDA-2)in AVR systems while preserving robustness.In particular,we indirectly tune the PID controller by shifting the frequency response.The new PID parameters depend on the frequency-shifting constant and the previously optimized PID parameters.Adjusting the frequency-shifting constant modifies all the PID parameters simultaneously,thereby improving the control performance and robustness.We evaluate the robustness of the proposed online PID tuning method by comparing the gain margins(GMs)and phase margins(PMs)with previously optimized PID parameters during parameter uncertainties.The proposed method is further evaluated in terms of disturbance rejection,measurement noise,and frequency response analysis during parameter uncertainty calculations against existing methods.Simulations show that the proposed method significantly improves the robustness of the controller in the AVR system.In summary,online self-tuning enables automated PID parameter adjustment in an AVR system,while maintaining stability and robustness.展开更多
Quadrotor unmanned aerial vehicles(UAVs)are widely used in inspection,agriculture,express delivery,and other fields owing to their low cost and high flexibility.However,the current UAV control system has shortcomings ...Quadrotor unmanned aerial vehicles(UAVs)are widely used in inspection,agriculture,express delivery,and other fields owing to their low cost and high flexibility.However,the current UAV control system has shortcomings such as poor control accuracy and weak anti-interference ability to a certain extent.To address the control problem of a four-rotor UAV,we propose a method to enhance the controller’s accuracy by considering underactuated dynamics,nonlinearities,and external disturbances.A mathematical model is constructed based on the flight principles of the quadrotor UAV.We develop a control algorithm that combines humanoid intelligence with a cascade Proportional-Integral-Derivative(PID)approach.This algorithm incorporates the rate of change of the error into the inputs of the cascade PID controller,uses both the error and its rate of change as characteristic variables of the UAV’s control system,and employs a hyperbolic tangent function to improve the outer-loop control.The result is a double closed-loop intelligent PID(DCLIPID)control algorithm.Through MATLAB numerical simulation tests,it is found that the DCLIPID algorithm reduces the rise time by 0.5 s and the number of oscillations by 2 times compared to the string PID algorithm when a unit step signal is used as input.A UAV flight test was designed for comparison with the serial PID algorithm,and it was found that when the UAV planned the trajectory autonomously,the errors in the X-,Y-,and Z-directions were reduced by 0.22,0.21,and 0.31 m,respectively.Under the interference environment of artificial wind about 3.6 m·s^(-1),the UAV hovering error in X-,Y-,and Z-directions are 0.24,0.42,and 0.27 m,respectively.The simulation and experimental results show that the control method of humanoid intelligence and cascade PID can improve the real-time,control accuracy and anti-interference ability of the UAV,and the method has a certain reference value for the research in the field of UAV control.展开更多
Traditional proportional-integral-derivative(PID)controllers have achieved widespread success in industrial applications.However,the nonlinearity and uncertainty of practical systems cannot be ignored,even though most...Traditional proportional-integral-derivative(PID)controllers have achieved widespread success in industrial applications.However,the nonlinearity and uncertainty of practical systems cannot be ignored,even though most of the existing research on PID controllers is focused on linear systems.Therefore,developing a PID controller with learning ability is of great significance for complex nonlinear systems.This article proposes a deterministic learning-based advanced PID controller for robot manipulator systems with uncertainties.The introduction of neural networks(NNs)overcomes the upper limit of the traditional PID feedback mechanism’s capability.The proposed control scheme not only guarantees system stability and tracking error convergence but also provides a simple way to choose the three parameters of PID by setting the proportional coefficients.Under the partial persistent excitation(PE)condition,the closed-loop system unknown dynamics of robot manipulator systems are accurately approximated by NNs.Based on the acquired knowledge from the stable control process,a learning PID controller is developed to further improve overall control performance,while overcoming the problem of repeated online weight updates.Simulation studies and physical experiments demonstrate the validity and practicality of the proposed strategy discussed in this article.展开更多
To address the challenge of achieving unified control across diverse nonlinear systems, a comprehensive control theory spanning from PID (Proportional-Integral-Derivative) to ACPID (Auto-Coupling PID) has been propose...To address the challenge of achieving unified control across diverse nonlinear systems, a comprehensive control theory spanning from PID (Proportional-Integral-Derivative) to ACPID (Auto-Coupling PID) has been proposed. The primary concept is to unify all intricate factors, including internal dynamics and external bounded disturbance, into a single total disturbance. This enables the mapping of various nonlinear systems onto a linear disturbance system. Based on the theory of PID control and the characteristic equation of a critically damping system, Zeng’s stabilization rules (ZSR) and an ACPID control force based on a single speed factor have been designed. ACPID control theory is both simple and practical, with significant scientific significance and application value in the field of control engineering.展开更多
基金the Malaysian Ministry of Higher Education(MOHE)for their support through the Fundamental Research Grant Scheme(FRGS/1/2021/ICT02/UMP/03/3)(UMPSA Reference:RDU 210117)。
文摘Automatic voltage regulators(AVR)are designed to manipulate a synchronous generator’s voltage level automatically.Proportional integral derivative(PID)controllers are typically used in AVR systems to regulate voltage.Although advanced PID tuning methods have been proposed,the actual voltage response differs from the theoretical predictions due to modeling errors and system uncertainties.This requires continuous fine tuning of the PID parameters.However,manual adjustment of these parameters can compromise the stability and robustness of the AVR system.This study focuses on the online self-tuning of PID controllers called indirect design approach-2(IDA-2)in AVR systems while preserving robustness.In particular,we indirectly tune the PID controller by shifting the frequency response.The new PID parameters depend on the frequency-shifting constant and the previously optimized PID parameters.Adjusting the frequency-shifting constant modifies all the PID parameters simultaneously,thereby improving the control performance and robustness.We evaluate the robustness of the proposed online PID tuning method by comparing the gain margins(GMs)and phase margins(PMs)with previously optimized PID parameters during parameter uncertainties.The proposed method is further evaluated in terms of disturbance rejection,measurement noise,and frequency response analysis during parameter uncertainty calculations against existing methods.Simulations show that the proposed method significantly improves the robustness of the controller in the AVR system.In summary,online self-tuning enables automated PID parameter adjustment in an AVR system,while maintaining stability and robustness.
基金supported by the Scientific Research Projects of Higher Education Institutions in Hebei Province(Grant No.QN2023188)the project of Hebei University of Science and Technology(Grant No.1200752).
文摘Quadrotor unmanned aerial vehicles(UAVs)are widely used in inspection,agriculture,express delivery,and other fields owing to their low cost and high flexibility.However,the current UAV control system has shortcomings such as poor control accuracy and weak anti-interference ability to a certain extent.To address the control problem of a four-rotor UAV,we propose a method to enhance the controller’s accuracy by considering underactuated dynamics,nonlinearities,and external disturbances.A mathematical model is constructed based on the flight principles of the quadrotor UAV.We develop a control algorithm that combines humanoid intelligence with a cascade Proportional-Integral-Derivative(PID)approach.This algorithm incorporates the rate of change of the error into the inputs of the cascade PID controller,uses both the error and its rate of change as characteristic variables of the UAV’s control system,and employs a hyperbolic tangent function to improve the outer-loop control.The result is a double closed-loop intelligent PID(DCLIPID)control algorithm.Through MATLAB numerical simulation tests,it is found that the DCLIPID algorithm reduces the rise time by 0.5 s and the number of oscillations by 2 times compared to the string PID algorithm when a unit step signal is used as input.A UAV flight test was designed for comparison with the serial PID algorithm,and it was found that when the UAV planned the trajectory autonomously,the errors in the X-,Y-,and Z-directions were reduced by 0.22,0.21,and 0.31 m,respectively.Under the interference environment of artificial wind about 3.6 m·s^(-1),the UAV hovering error in X-,Y-,and Z-directions are 0.24,0.42,and 0.27 m,respectively.The simulation and experimental results show that the control method of humanoid intelligence and cascade PID can improve the real-time,control accuracy and anti-interference ability of the UAV,and the method has a certain reference value for the research in the field of UAV control.
基金supported by the National Natural Science Foundation of China(62203262,62350083)Natural Science Foundation of Shandong Province(ZR2020ZD40,ZR2022QF124)。
文摘Traditional proportional-integral-derivative(PID)controllers have achieved widespread success in industrial applications.However,the nonlinearity and uncertainty of practical systems cannot be ignored,even though most of the existing research on PID controllers is focused on linear systems.Therefore,developing a PID controller with learning ability is of great significance for complex nonlinear systems.This article proposes a deterministic learning-based advanced PID controller for robot manipulator systems with uncertainties.The introduction of neural networks(NNs)overcomes the upper limit of the traditional PID feedback mechanism’s capability.The proposed control scheme not only guarantees system stability and tracking error convergence but also provides a simple way to choose the three parameters of PID by setting the proportional coefficients.Under the partial persistent excitation(PE)condition,the closed-loop system unknown dynamics of robot manipulator systems are accurately approximated by NNs.Based on the acquired knowledge from the stable control process,a learning PID controller is developed to further improve overall control performance,while overcoming the problem of repeated online weight updates.Simulation studies and physical experiments demonstrate the validity and practicality of the proposed strategy discussed in this article.
文摘To address the challenge of achieving unified control across diverse nonlinear systems, a comprehensive control theory spanning from PID (Proportional-Integral-Derivative) to ACPID (Auto-Coupling PID) has been proposed. The primary concept is to unify all intricate factors, including internal dynamics and external bounded disturbance, into a single total disturbance. This enables the mapping of various nonlinear systems onto a linear disturbance system. Based on the theory of PID control and the characteristic equation of a critically damping system, Zeng’s stabilization rules (ZSR) and an ACPID control force based on a single speed factor have been designed. ACPID control theory is both simple and practical, with significant scientific significance and application value in the field of control engineering.
文摘针对观察型水下机器人在水下运动时易受暗流、波浪影响,造成操控困难、系统稳定性差等问题,建立遥控水下机器人(Remotely Operated Vehicle,ROV)不同运动的控制模型,考虑电机和导管螺旋桨推进器的传递函数对ROV控制系统的影响,确定定艏向和定深控制系统的闭环传递函数,结合模糊控制和比例积分微分(Proportional Integral Differential,PID)控制法,得到模糊PID控制器,基于MATLAB/Simulink环境进行ROV定深度运动仿真和ROV水平面艏向定偏角运动仿真。结果表明,与传统PID控制相比,模糊PID控制具有更优的ROV定艏向和定深度控制效果,不会发生超调现象,在抗干扰能力和响应速度方面具有明显的优势,可有效地实现ROV定艏向和定深度运动控制。