In this paper, three different controllers are proposed and simulated for maglev guiding systems to have convenient and smooth elevator motion. The proposed controllers are PID, sliding mode, and PID sliding mode cont...In this paper, three different controllers are proposed and simulated for maglev guiding systems to have convenient and smooth elevator motion. The proposed controllers are PID, sliding mode, and PID sliding mode controllers. The advantages and disadvantages of the proposed controllers are discussed. Although, PID controller is fast, its response affected considerably by external disturbances. Unlike PID, the sliding mode controller is so robust, but its transient is unsuitable based on application conditions. However, an acceptable controller for ropeless elevator guiding system should guaranty the passengers safety and convenient. Consequently, the response of the system should be fast, robust, and without considerable overshoots and oscillations. These required advantages are compromised in the proposed parallel PID sliding mode controller. The affectivity of the introduced controllers for maglev guiding system is investigated through conducted simulations in MATLAB/Simulink environment. The obtained results illustrate that PID sliding mode controller is a so fast and robust controller for a ropeless elevator maglev guiding system.展开更多
This paper presents a synthesis of current-mode PI, PD and PID controllers employing current controlled current differential buffer amplifiers (CCCDBAs). The features of these controllers are that: the output paramete...This paper presents a synthesis of current-mode PI, PD and PID controllers employing current controlled current differential buffer amplifiers (CCCDBAs). The features of these controllers are that: the output parameters can be electronically/independently controlled by adjusting corresponding bias currents in the proportional, integral, and deviation controllers;circuit description of the PID controller is simply formulated, it consists of four CCCDBAs cooperating with two grounded capacitors, and PI and PD controllers are composed of three CCCCDBAs and a grounded capacitor. Without any external resistor, the proposed circuits are very suitable to develop into integrated circuit architecture. The given results from the PSpice simulation agree well with the theoretical anticipation. The approximate power consumption in a closed loop control system consisting of the PI, PD and PID controller with low-pass filter passive plant are 4.03 mW, 4.85 mW and 5.71 mW, respectively, at ±1.5 V power supply voltages.展开更多
A novel constant force feedback mechanism based on fuzzy logic for tapping mode Atomic Force Microscopes (AFM) is proposed in this paper. A mathematical model for characterizing the cantilever-sample interaction subsy...A novel constant force feedback mechanism based on fuzzy logic for tapping mode Atomic Force Microscopes (AFM) is proposed in this paper. A mathematical model for characterizing the cantilever-sample interaction subsystem which is nonlinear and contains large uncertainty is first developed. Then, a PID-like fuzzy controller, combing a PD-like fuzzy controller and a PI controller, is designed to regulate the controller efforts and schedule the applied voltage of the Z-axis of the piezoelectric tube scanner to maintain a constant tip-sample interaction force during sample-scanning. Using the PID-like fuzzy controller allows the cantilever tip to track sample surface rapidly and accurately even though the topography of the surface is arbitrary and not given in advance. This rapid tracking response facilitates us to observe samples with high aspect ratio micro structures accurately and quickly. Besides, the overshoot which will result in tip crash in commercial AFMs with a traditional PID controller could be avoided. Additionally, the controller efforts can be intelligently scheduled by using the fuzzy logic. Thus, continuous manual gain-tuning by trial and error such as those in commercial AFMs is alleviated. In final, computer simulations and experimental verifications are provided to demonstrate the effectiveness and confirm the validity of the proposed controller.展开更多
Interacting The highest storage capacity of a circular tank makes it pop-ular in process industries.Because of the varying surface area of the cross-sec-tions of the tank,this two-tank level system has nonlinear chara...Interacting The highest storage capacity of a circular tank makes it pop-ular in process industries.Because of the varying surface area of the cross-sec-tions of the tank,this two-tank level system has nonlinear characteristics.Controlling theflow rate of liquid is one of the most difficult challenges in the production process.This proposed effort is critical in preventing time delays and errors by managing thefluid level.Several scholars have explored and explored ways to reduce the problem of nonlinearity,but their techniques have not yielded better results.Different types of controllers with various techniques are implemented by the proposed system.Sliding Mode Controller(SMC)with Fractional Order PID Controller based on Intelligent Adaptive Neuro-Fuzzy Infer-ence System(ANFIS)is a novel technique for liquid level regulation in an inter-connected spherical tank system to avoid interferences and achieve better performance in comparison of rise time,settling time,and overshoot decrease.Evaluating the simulated results acquired by the controller yields the efficiency of the proposed system.The simulated results were produced using MATLAB 2018 and the FOMCON toolbox.Finally,the performance of the conventional controller(FOPID,PID-SMC)and proposed ANFIS based SMC-FOPID control-lers are compared and analyzed the performance indices.展开更多
简要分析了静止无功补偿器(Static Var Compensator,SVC)控制系统的组成和补偿原理,提出一种用于SVC控制器的模糊鄄PID双模控制设计方法。该模糊鄄PID控制器综合了模糊和PID两种控制方式的优点,根据预先给定的偏差范围在两种模态之间自...简要分析了静止无功补偿器(Static Var Compensator,SVC)控制系统的组成和补偿原理,提出一种用于SVC控制器的模糊鄄PID双模控制设计方法。该模糊鄄PID控制器综合了模糊和PID两种控制方式的优点,根据预先给定的偏差范围在两种模态之间自动切换。该控制器用于控制非线性系统时,既具有模糊控制的简单有效,又具有PID控制的精确性。最后,给出了平衡与不平衡负载条件下的电压电流动静态波形。实验结果表明,该控制器具有较高的控制精度和鲁棒性。展开更多
文摘In this paper, three different controllers are proposed and simulated for maglev guiding systems to have convenient and smooth elevator motion. The proposed controllers are PID, sliding mode, and PID sliding mode controllers. The advantages and disadvantages of the proposed controllers are discussed. Although, PID controller is fast, its response affected considerably by external disturbances. Unlike PID, the sliding mode controller is so robust, but its transient is unsuitable based on application conditions. However, an acceptable controller for ropeless elevator guiding system should guaranty the passengers safety and convenient. Consequently, the response of the system should be fast, robust, and without considerable overshoots and oscillations. These required advantages are compromised in the proposed parallel PID sliding mode controller. The affectivity of the introduced controllers for maglev guiding system is investigated through conducted simulations in MATLAB/Simulink environment. The obtained results illustrate that PID sliding mode controller is a so fast and robust controller for a ropeless elevator maglev guiding system.
文摘This paper presents a synthesis of current-mode PI, PD and PID controllers employing current controlled current differential buffer amplifiers (CCCDBAs). The features of these controllers are that: the output parameters can be electronically/independently controlled by adjusting corresponding bias currents in the proportional, integral, and deviation controllers;circuit description of the PID controller is simply formulated, it consists of four CCCDBAs cooperating with two grounded capacitors, and PI and PD controllers are composed of three CCCCDBAs and a grounded capacitor. Without any external resistor, the proposed circuits are very suitable to develop into integrated circuit architecture. The given results from the PSpice simulation agree well with the theoretical anticipation. The approximate power consumption in a closed loop control system consisting of the PI, PD and PID controller with low-pass filter passive plant are 4.03 mW, 4.85 mW and 5.71 mW, respectively, at ±1.5 V power supply voltages.
文摘A novel constant force feedback mechanism based on fuzzy logic for tapping mode Atomic Force Microscopes (AFM) is proposed in this paper. A mathematical model for characterizing the cantilever-sample interaction subsystem which is nonlinear and contains large uncertainty is first developed. Then, a PID-like fuzzy controller, combing a PD-like fuzzy controller and a PI controller, is designed to regulate the controller efforts and schedule the applied voltage of the Z-axis of the piezoelectric tube scanner to maintain a constant tip-sample interaction force during sample-scanning. Using the PID-like fuzzy controller allows the cantilever tip to track sample surface rapidly and accurately even though the topography of the surface is arbitrary and not given in advance. This rapid tracking response facilitates us to observe samples with high aspect ratio micro structures accurately and quickly. Besides, the overshoot which will result in tip crash in commercial AFMs with a traditional PID controller could be avoided. Additionally, the controller efforts can be intelligently scheduled by using the fuzzy logic. Thus, continuous manual gain-tuning by trial and error such as those in commercial AFMs is alleviated. In final, computer simulations and experimental verifications are provided to demonstrate the effectiveness and confirm the validity of the proposed controller.
文摘Interacting The highest storage capacity of a circular tank makes it pop-ular in process industries.Because of the varying surface area of the cross-sec-tions of the tank,this two-tank level system has nonlinear characteristics.Controlling theflow rate of liquid is one of the most difficult challenges in the production process.This proposed effort is critical in preventing time delays and errors by managing thefluid level.Several scholars have explored and explored ways to reduce the problem of nonlinearity,but their techniques have not yielded better results.Different types of controllers with various techniques are implemented by the proposed system.Sliding Mode Controller(SMC)with Fractional Order PID Controller based on Intelligent Adaptive Neuro-Fuzzy Infer-ence System(ANFIS)is a novel technique for liquid level regulation in an inter-connected spherical tank system to avoid interferences and achieve better performance in comparison of rise time,settling time,and overshoot decrease.Evaluating the simulated results acquired by the controller yields the efficiency of the proposed system.The simulated results were produced using MATLAB 2018 and the FOMCON toolbox.Finally,the performance of the conventional controller(FOPID,PID-SMC)and proposed ANFIS based SMC-FOPID control-lers are compared and analyzed the performance indices.
文摘简要分析了静止无功补偿器(Static Var Compensator,SVC)控制系统的组成和补偿原理,提出一种用于SVC控制器的模糊鄄PID双模控制设计方法。该模糊鄄PID控制器综合了模糊和PID两种控制方式的优点,根据预先给定的偏差范围在两种模态之间自动切换。该控制器用于控制非线性系统时,既具有模糊控制的简单有效,又具有PID控制的精确性。最后,给出了平衡与不平衡负载条件下的电压电流动静态波形。实验结果表明,该控制器具有较高的控制精度和鲁棒性。