An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an externa...An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an external load to DC motor. Both the motor module and the load module are crea- ted in Simulink to achieve simulation results closer to real robot system. In this way, it can well veri- fy the performance of the improved single-neuron PID controller, which is a combined controller of normal PID controller and single-neuron PID controller. Besides, an intelligent switcher can help to realize the function of choosing a better control algorithm according to motor' s velocity output. Sim- ulated results confirm the rapid and stable response of the improved PID controller. Moreover, the improved single-neuron PID controller has an excellent ability to overcome the load impact and su- press the jamming signals. At last, a GUI interface platform is built to make the controller easier to be applied in other robot systems.展开更多
The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many ...The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many concepts from artificial intelligence. The most commonly used controller in the industry field is the proportional-plus-integral-plus-derivative (PID) controller. Fuzzy logic controller (FLC) provides an alternative to PID controller, especially when the available system models are inexact or unavailable. Also rapid advances in digital technologies have given designers the option of implementing controllers using Field Programmable Gate Array (FPGA) which depends on parallel programming. This method has many advantages over classical microprocessors. In this research, A model of the fuzzy PID control system is implemented in real time with a Xilinx FPGA (Spartan-3A, Xilinx Company, 2007). It is introduced to maintain a constant speed to when the load varies.,The model of a DC motor is considered as a second order system with load variation as a an example for complex model systems. For comparison purpose, two widely used controllers “PID and Fuzzy” have been implemented in the same FPGA card to examine the performance of the proposed system. These controllers have been tested using Matlab/Simulink program under speed and load variation conditions. The controllers were implemented to run the motor as real time application under speed and load variation conditions and showed the superiority of Fuzzy-PID.展开更多
This paper presents the results of research on speed regulation of a brushless DC motor</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">&l...This paper presents the results of research on speed regulation of a brushless DC motor</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">This is mainly a comparative study between a PID regulator and a fuzzy regulator applied to the operation of this type of engine in order to find the best control. The BLDC engine must operate under various speed and load conditions with improved performance and robust and complex speed control. Because of this complexity, the traditional PID command encounters difficulties in controlling the speed of a BLDC. Another control technique is currently developing and is producing good results. This is the fuzzy controller that handles process control problems, that is, managing a process based on a given set point per action on the variables that describe the process. To achieve the desired results, the brushless DC machine model will be studied. With the model obtained, both types of regulator will be tested. A synthesis of the observed comparison results will enable a conclusion to be drawn on the performance of the two types of regulators driving a BLDC (Brushless DC)</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.展开更多
This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through electric networks for optimization problems with continuous design variables. The CS algorithm posses...This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through electric networks for optimization problems with continuous design variables. The CS algorithm possesses two powerful strategies, exploration and exploitation, for searching the global optimum. Based on the stochastic process, the derivatives of the objective function is unnecessary for the proposed CS. To evaluate its performance, the CS is tested against several unconstrained optimization problems. The results obtained are compared to those obtained by the popular search techniques, i.e., the genetic algorithm (GA), the particle swarm optimization (PSO), and the adaptive tabu search (ATS). As results, the CS outperforms other algorithms and provides superior results. The CS is also applied to a constrained design of the optimum PID controller for the dc motor speed control system. From experimental results, the CS has been successfully applied to the speed control of the dc motor.展开更多
针对鲸鱼优化算法易陷入局部最优以及无刷直流电机(brushless DC motor,BLDCM)速度控制响应慢、超调量大等缺点,提出一种改进鲸鱼优化算法(improve whale optimization algorithm,IWOA)优化PID(proportional integral derivative)参数...针对鲸鱼优化算法易陷入局部最优以及无刷直流电机(brushless DC motor,BLDCM)速度控制响应慢、超调量大等缺点,提出一种改进鲸鱼优化算法(improve whale optimization algorithm,IWOA)优化PID(proportional integral derivative)参数的无刷直流电机速度控制算法.该算法采用高斯变异因子、自适应权重因子和动态阈值相结合对鲸鱼优化算法进行优化.仿真实验结果表明,改进鲸鱼优化PID的无刷直流电机转速控制算法具有更快的收敛速度以及较小的超调现象,鲁棒性也更好.展开更多
To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,an...To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,and low accuracy exhibited by traditional PID controllers.When selecting the glowworm neighborhood set,an optimization scheme based on the growth and competition behavior of weeds is applied to a single glowworm to prevent falling into a local optimal solution.After the glowworm’s position is updated,the league selection operator is introduced to search for the global optimal solution.Combining the local search ability of the invasive weed optimization with the global search ability of the league selection operator enhances the robustness of the algorithm and also accelerates the convergence speed of the algorithm.The mathematical model of the brushless DC motor is established,the PID parameters are tuned and optimized using improved Glowworm Swarm Optimization algorithm,and the speed of the brushless DC motor is adjusted.In a Simulink environment,a double closed-loop speed control model was established to simulate the speed control of a brushless DC motor,and this simulation was compared with a traditional PID control.The simulation results show that the model based on the improved Glowworm Swarm Optimization algorithm has good robustness and a steady-state response speed for motor speed control.展开更多
无刷直流电机(Brushless DC Motor,BLDCM)是一种多变量、非线性的控制系统,采用经典的PID控制难以得到满意的控制效果。本文提出了一种新型的基于模糊规则的免疫PID控制器用于无刷直流电机的转速控制中。这种免疫PID控制根据T细胞的生...无刷直流电机(Brushless DC Motor,BLDCM)是一种多变量、非线性的控制系统,采用经典的PID控制难以得到满意的控制效果。本文提出了一种新型的基于模糊规则的免疫PID控制器用于无刷直流电机的转速控制中。这种免疫PID控制根据T细胞的生物免疫反馈机理,包括决定应答速度的激活环节和决定稳定效果的抑制环节。用模糊规则来逼近其中的抑制环节,并与PID结合补偿其控制偏差。系统采用双闭环控制,内环为电流环,外环为速度环。Matlab仿真表明,系统超调量小,速度响应快,而且速度响应受电机参数变化影响小,各种外界干扰也得到了很好的抑制,具有较高的控制精度和较好的鲁棒性。通过以TI公司的TMS320F2812 DSP为基础进行的实验可以看出,较之传统PID控制,采用免疫PID控制在无刷直流电机的实时控制中取得了较好的实验效果,具有较好的动态和静态性能。展开更多
文摘An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an external load to DC motor. Both the motor module and the load module are crea- ted in Simulink to achieve simulation results closer to real robot system. In this way, it can well veri- fy the performance of the improved single-neuron PID controller, which is a combined controller of normal PID controller and single-neuron PID controller. Besides, an intelligent switcher can help to realize the function of choosing a better control algorithm according to motor' s velocity output. Sim- ulated results confirm the rapid and stable response of the improved PID controller. Moreover, the improved single-neuron PID controller has an excellent ability to overcome the load impact and su- press the jamming signals. At last, a GUI interface platform is built to make the controller easier to be applied in other robot systems.
文摘The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many concepts from artificial intelligence. The most commonly used controller in the industry field is the proportional-plus-integral-plus-derivative (PID) controller. Fuzzy logic controller (FLC) provides an alternative to PID controller, especially when the available system models are inexact or unavailable. Also rapid advances in digital technologies have given designers the option of implementing controllers using Field Programmable Gate Array (FPGA) which depends on parallel programming. This method has many advantages over classical microprocessors. In this research, A model of the fuzzy PID control system is implemented in real time with a Xilinx FPGA (Spartan-3A, Xilinx Company, 2007). It is introduced to maintain a constant speed to when the load varies.,The model of a DC motor is considered as a second order system with load variation as a an example for complex model systems. For comparison purpose, two widely used controllers “PID and Fuzzy” have been implemented in the same FPGA card to examine the performance of the proposed system. These controllers have been tested using Matlab/Simulink program under speed and load variation conditions. The controllers were implemented to run the motor as real time application under speed and load variation conditions and showed the superiority of Fuzzy-PID.
文摘This paper presents the results of research on speed regulation of a brushless DC motor</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">This is mainly a comparative study between a PID regulator and a fuzzy regulator applied to the operation of this type of engine in order to find the best control. The BLDC engine must operate under various speed and load conditions with improved performance and robust and complex speed control. Because of this complexity, the traditional PID command encounters difficulties in controlling the speed of a BLDC. Another control technique is currently developing and is producing good results. This is the fuzzy controller that handles process control problems, that is, managing a process based on a given set point per action on the variables that describe the process. To achieve the desired results, the brushless DC machine model will be studied. With the model obtained, both types of regulator will be tested. A synthesis of the observed comparison results will enable a conclusion to be drawn on the performance of the two types of regulators driving a BLDC (Brushless DC)</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.
文摘This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through electric networks for optimization problems with continuous design variables. The CS algorithm possesses two powerful strategies, exploration and exploitation, for searching the global optimum. Based on the stochastic process, the derivatives of the objective function is unnecessary for the proposed CS. To evaluate its performance, the CS is tested against several unconstrained optimization problems. The results obtained are compared to those obtained by the popular search techniques, i.e., the genetic algorithm (GA), the particle swarm optimization (PSO), and the adaptive tabu search (ATS). As results, the CS outperforms other algorithms and provides superior results. The CS is also applied to a constrained design of the optimum PID controller for the dc motor speed control system. From experimental results, the CS has been successfully applied to the speed control of the dc motor.
文摘针对鲸鱼优化算法易陷入局部最优以及无刷直流电机(brushless DC motor,BLDCM)速度控制响应慢、超调量大等缺点,提出一种改进鲸鱼优化算法(improve whale optimization algorithm,IWOA)优化PID(proportional integral derivative)参数的无刷直流电机速度控制算法.该算法采用高斯变异因子、自适应权重因子和动态阈值相结合对鲸鱼优化算法进行优化.仿真实验结果表明,改进鲸鱼优化PID的无刷直流电机转速控制算法具有更快的收敛速度以及较小的超调现象,鲁棒性也更好.
基金This research was funded by the Hebei Science and Technology Support Program Project(19273703D)the Hebei Higher Education Science and Technology Research Project(ZD2020318).
文摘To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,and low accuracy exhibited by traditional PID controllers.When selecting the glowworm neighborhood set,an optimization scheme based on the growth and competition behavior of weeds is applied to a single glowworm to prevent falling into a local optimal solution.After the glowworm’s position is updated,the league selection operator is introduced to search for the global optimal solution.Combining the local search ability of the invasive weed optimization with the global search ability of the league selection operator enhances the robustness of the algorithm and also accelerates the convergence speed of the algorithm.The mathematical model of the brushless DC motor is established,the PID parameters are tuned and optimized using improved Glowworm Swarm Optimization algorithm,and the speed of the brushless DC motor is adjusted.In a Simulink environment,a double closed-loop speed control model was established to simulate the speed control of a brushless DC motor,and this simulation was compared with a traditional PID control.The simulation results show that the model based on the improved Glowworm Swarm Optimization algorithm has good robustness and a steady-state response speed for motor speed control.
文摘无刷直流电机(Brushless DC Motor,BLDCM)是一种多变量、非线性的控制系统,采用经典的PID控制难以得到满意的控制效果。本文提出了一种新型的基于模糊规则的免疫PID控制器用于无刷直流电机的转速控制中。这种免疫PID控制根据T细胞的生物免疫反馈机理,包括决定应答速度的激活环节和决定稳定效果的抑制环节。用模糊规则来逼近其中的抑制环节,并与PID结合补偿其控制偏差。系统采用双闭环控制,内环为电流环,外环为速度环。Matlab仿真表明,系统超调量小,速度响应快,而且速度响应受电机参数变化影响小,各种外界干扰也得到了很好的抑制,具有较高的控制精度和较好的鲁棒性。通过以TI公司的TMS320F2812 DSP为基础进行的实验可以看出,较之传统PID控制,采用免疫PID控制在无刷直流电机的实时控制中取得了较好的实验效果,具有较好的动态和静态性能。