Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of ...Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of this article lies in the application of a genetic algorithm interval type-2 fuzzy logic controller (GAIT2FLC) in the design of fuzzy controller for the position control of DC Motor. The entire system has been modeled using MATLAB R11a. The performance of the proposed GAIT2FLC is compared with that of its corresponding conventional genetic algorithm type-1 FLC in terms of several performance measures such as rise time, peak overshoot, settling time, integral absolute error (IAE) and integral of time multiplied absolute error (ITAE) and in each case, the proposed scheme shows improved performance over its conventional counterpart. Extensive simulation studies are conducted to compare the response of the given system with the conventional genetic algorithm type-1 fuzzy controller to the response given with the proposed GAIT2FLC scheme.展开更多
Brushless DC motor ( BLDCM) speed servo system is multivariable,nonlinear and strong coupling. The parameter variation, the cogging torque and the load disturbance easily influence its performance. Therefore,it is dif...Brushless DC motor ( BLDCM) speed servo system is multivariable,nonlinear and strong coupling. The parameter variation, the cogging torque and the load disturbance easily influence its performance. Therefore,it is difficult to achieve superior performance by using the conventional PID controller. To solve the deficiency,the paper represents the algorithm of active-disturbance rejection control ( ADRC) based on back-propagation ( BP) neural network. The ADRC is independent on accurate system and its extended-state observer can estimate the disturbance of the system accurately. However,the parameters of Nonlinear Feedback ( NF) in ADRC are difficult to obtain. So in this paper,these parameters are self-turned by the BP neural network. The simulation and experiment results indicate that the ADRC based on BP neural network can improve the performances of the servo system in rapidity,control accuracy,adaptability and robustness.展开更多
This work concerns the study of problems relating to the adaptive internal model control of DC motor in both cases conventional and neural. The most important aspects of design building blocks of adaptive internal mod...This work concerns the study of problems relating to the adaptive internal model control of DC motor in both cases conventional and neural. The most important aspects of design building blocks of adaptive internal model control are the choice of architectures, learning algorithms, and examples of learning. The choice of parametric adaptation algorithm for updating elements of the conventional adaptive internal model control shows limitations. To overcome these limitations, we chose the architectures of neural networks deduced from the conventional models and the Levenberg-marquardt during the adjustment of system parameters of the adaptive neural internal model control. The results of this latest control showed compensation for disturbance, good trajectory tracking performance and system stability.展开更多
针对鲸鱼优化算法易陷入局部最优以及无刷直流电机(brushless DC motor,BLDCM)速度控制响应慢、超调量大等缺点,提出一种改进鲸鱼优化算法(improve whale optimization algorithm,IWOA)优化PID(proportional integral derivative)参数...针对鲸鱼优化算法易陷入局部最优以及无刷直流电机(brushless DC motor,BLDCM)速度控制响应慢、超调量大等缺点,提出一种改进鲸鱼优化算法(improve whale optimization algorithm,IWOA)优化PID(proportional integral derivative)参数的无刷直流电机速度控制算法.该算法采用高斯变异因子、自适应权重因子和动态阈值相结合对鲸鱼优化算法进行优化.仿真实验结果表明,改进鲸鱼优化PID的无刷直流电机转速控制算法具有更快的收敛速度以及较小的超调现象,鲁棒性也更好.展开更多
This paper proposes an effective Maximum Power Point Tracking (MPPT) controller being incorporated into a solar Photovoltaic system supplying a Brushless DC (BLDC) motor drive as the load. The MPPT controller makes us...This paper proposes an effective Maximum Power Point Tracking (MPPT) controller being incorporated into a solar Photovoltaic system supplying a Brushless DC (BLDC) motor drive as the load. The MPPT controller makes use of a Genetic Assisted Radial Basis Function Neural Network based technique that includes a high step up Interleaved DC-DC converter. The BLDC motor combines a controller with a Proportional Integral (PI) speed control loop. MATLAB/Simulink has been used to construct the dynamic model and simulate the system. The solar Photovoltaic system uses Genetic Assisted-Radial Basis Function-Neural Network (GA-RBF-NN) where the output signal governs the DC-DC boost converters to accomplish the MPPT. This proposed GA-RBF-NN based MPPT controller produces an average power increase of 26.37% and faster response time.展开更多
无刷直流电机作为家用电器和精密仪器的动力源器件,在实际控制系统中通常采用传统的比例-积分-微分(proportion integral differential,PID)控制,但传统的PID控制精准度较低,对外界干扰较为敏感,无法满足使用的精准要求。针对这一问题,...无刷直流电机作为家用电器和精密仪器的动力源器件,在实际控制系统中通常采用传统的比例-积分-微分(proportion integral differential,PID)控制,但传统的PID控制精准度较低,对外界干扰较为敏感,无法满足使用的精准要求。针对这一问题,一种利用粒子群算法来实现无刷直流电机矢量控制的方法被提出:首先,搭建无刷直流电机数学模型;其次,利用仿真软件对电机矢量控制系统模型进行搭建,再利用改进粒子群算法对电机PID控制器参数进行优化,以实现对无刷直流电机系统的精确控制;最后,以STM32F407单片机搭建实验平台,并进行实验验证。结果表明:该方法与传统矢量控制相比,在稳态为800 r/min和1500 r/min时输出的最大超调量分别降低了32.30%和38.09%,调整时间分别优化了15.25%和5.66%;在负载阶段的最大转速差缩减了29.28 r/min,调整时间优化了8.08%,抗干扰能力和系统稳定性显著提高。展开更多
文摘Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of this article lies in the application of a genetic algorithm interval type-2 fuzzy logic controller (GAIT2FLC) in the design of fuzzy controller for the position control of DC Motor. The entire system has been modeled using MATLAB R11a. The performance of the proposed GAIT2FLC is compared with that of its corresponding conventional genetic algorithm type-1 FLC in terms of several performance measures such as rise time, peak overshoot, settling time, integral absolute error (IAE) and integral of time multiplied absolute error (ITAE) and in each case, the proposed scheme shows improved performance over its conventional counterpart. Extensive simulation studies are conducted to compare the response of the given system with the conventional genetic algorithm type-1 fuzzy controller to the response given with the proposed GAIT2FLC scheme.
文摘Brushless DC motor ( BLDCM) speed servo system is multivariable,nonlinear and strong coupling. The parameter variation, the cogging torque and the load disturbance easily influence its performance. Therefore,it is difficult to achieve superior performance by using the conventional PID controller. To solve the deficiency,the paper represents the algorithm of active-disturbance rejection control ( ADRC) based on back-propagation ( BP) neural network. The ADRC is independent on accurate system and its extended-state observer can estimate the disturbance of the system accurately. However,the parameters of Nonlinear Feedback ( NF) in ADRC are difficult to obtain. So in this paper,these parameters are self-turned by the BP neural network. The simulation and experiment results indicate that the ADRC based on BP neural network can improve the performances of the servo system in rapidity,control accuracy,adaptability and robustness.
文摘This work concerns the study of problems relating to the adaptive internal model control of DC motor in both cases conventional and neural. The most important aspects of design building blocks of adaptive internal model control are the choice of architectures, learning algorithms, and examples of learning. The choice of parametric adaptation algorithm for updating elements of the conventional adaptive internal model control shows limitations. To overcome these limitations, we chose the architectures of neural networks deduced from the conventional models and the Levenberg-marquardt during the adjustment of system parameters of the adaptive neural internal model control. The results of this latest control showed compensation for disturbance, good trajectory tracking performance and system stability.
文摘针对鲸鱼优化算法易陷入局部最优以及无刷直流电机(brushless DC motor,BLDCM)速度控制响应慢、超调量大等缺点,提出一种改进鲸鱼优化算法(improve whale optimization algorithm,IWOA)优化PID(proportional integral derivative)参数的无刷直流电机速度控制算法.该算法采用高斯变异因子、自适应权重因子和动态阈值相结合对鲸鱼优化算法进行优化.仿真实验结果表明,改进鲸鱼优化PID的无刷直流电机转速控制算法具有更快的收敛速度以及较小的超调现象,鲁棒性也更好.
文摘This paper proposes an effective Maximum Power Point Tracking (MPPT) controller being incorporated into a solar Photovoltaic system supplying a Brushless DC (BLDC) motor drive as the load. The MPPT controller makes use of a Genetic Assisted Radial Basis Function Neural Network based technique that includes a high step up Interleaved DC-DC converter. The BLDC motor combines a controller with a Proportional Integral (PI) speed control loop. MATLAB/Simulink has been used to construct the dynamic model and simulate the system. The solar Photovoltaic system uses Genetic Assisted-Radial Basis Function-Neural Network (GA-RBF-NN) where the output signal governs the DC-DC boost converters to accomplish the MPPT. This proposed GA-RBF-NN based MPPT controller produces an average power increase of 26.37% and faster response time.