期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Optimal fuzzy PID controller with adjustable factors based on flexible polyhedron search algorithm 被引量:2
1
作者 谭冠政 肖宏峰 王越超 《Journal of Central South University of Technology》 EI 2002年第2期128-133,共6页
A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustab... A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes. 展开更多
关键词 OPTIMAL fuzzy inference pid controller adjustable factor flexible polyhedron search algorithm intelligent artificial leg
下载PDF
A novel PID controller tuning method based on optimization technique 被引量:5
2
作者 梁昔明 李山春 HASSAN A B 《Journal of Central South University》 SCIE EI CAS 2010年第5期1036-1042,共7页
An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) ... An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems. 展开更多
关键词 pid controller optimization infeasible interior point method sequential quadratic programming SIMULATION
下载PDF
Fractional order PID control for steer-by-wire system of emergency rescue vehicle based on genetic algorithm 被引量:7
3
作者 XU Fei-xiang LIU Xin-hui +2 位作者 CHEN Wei ZHOU Chen CAO Bing-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2340-2353,共14页
Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of... Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of the ECV.The overall structure and mathematical model of the SBW system are described at length.The fractional order proportional-integral-derivative(FOPID)controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system.The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation.Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error(ITAE),peak overshoot,as well as settling time.The time-domain simulations are implemented to identify the performance of the raised FOPID controller.The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative(PID)controller on the part of transient response,tracking capability and robustness. 展开更多
关键词 steer-by-wire system emergency rescue vehicle fractional order proportional-integral-derivative(FOpid)controller parameter optimization genetic algorithm
下载PDF
Genetic Optimization Algorithm of PID Decoupling Control for VAV Air-Conditioning System 被引量:3
4
作者 王江江 安大伟 +1 位作者 张春发 荆有印 《Transactions of Tianjin University》 EI CAS 2009年第4期308-314,共7页
Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multiv... Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multivariable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified 10 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control. 展开更多
关键词 genetic algorithm decoupling control pid control variable air volume air-conditioning system
下载PDF
Multimachine Power System Stabilizer based on Optimal Fuzzy PID with Genetic Algorithm Tuning
5
作者 E. A. Hakim A.Soeprijanto M. HP 《Journal of Energy and Power Engineering》 2010年第1期43-50,共8页
This paper presented PSS (Power system stabilizer) design based on Genetic Algorithm - Fuzzy PID (Proportional Integral and derivative) or GAFPID. GAFPID based PSS design is considered for multimachine power syste... This paper presented PSS (Power system stabilizer) design based on Genetic Algorithm - Fuzzy PID (Proportional Integral and derivative) or GAFPID. GAFPID based PSS design is considered for multimachine power system. The main motivation for this design is to stabilize or to control low-fi'equency oscillation and terminal voltage of power systems. Genetic Algorithm (GA) is employed for the optimization of the parameter of stabilizer. By minimizing an objective function in which the oscillatory speed deviation of the generator, small signal and large signal performance of the system is improved. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a simple two-area power system. 展开更多
关键词 Fuzzy pid genetic algorithm power system stabilizer
下载PDF
高分子注塑加工工艺智能检测研究进展 被引量:1
6
作者 张永超 《工程塑料应用》 CAS CSCD 北大核心 2018年第11期143-147,共5页
主要综述了比例–积分–微分(PID)法在高分子注塑加工过程中对各工序的温度场、压力场、位移场等工艺参数的检测和调控研究,并介绍了近年来PID法研究的优化研究进展。PID法在高分子注塑加工过程中能够快速检测到各个加工工艺参数的变化... 主要综述了比例–积分–微分(PID)法在高分子注塑加工过程中对各工序的温度场、压力场、位移场等工艺参数的检测和调控研究,并介绍了近年来PID法研究的优化研究进展。PID法在高分子注塑加工过程中能够快速检测到各个加工工艺参数的变化,并做出响应,从而进一步实现对工艺参数的有效控制。利用PID法对高分子注塑加工工艺参数进行检测和调控,能够有效降低高分子注塑过程中各参数的超调和稳态误差,保障稳定的加工过程,制备出质量上乘、性能优异的高分子制品。 展开更多
关键词 注塑加工 智能检测 比例–积分–微分 pid法优化
下载PDF
Using improved particle swarm optimization to tune PID controllers in cooperative collision avoidance systems 被引量:6
7
作者 Xing-chen WU Gui-he QIN +2 位作者 Ming-hui SUN He YU Qian-yi XU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第9期1385-1395,共11页
The introduction ofproportional-integral-dorivative (PID) controllers into cooperative collision avoidance systems (CCASs) has been hindered by difficulties in their optimization and by a lack of study of their ef... The introduction ofproportional-integral-dorivative (PID) controllers into cooperative collision avoidance systems (CCASs) has been hindered by difficulties in their optimization and by a lack of study of their effects on vehicle driving stability, comfort, and fuel economy. In this paper, we propose a method to optimize PID controllers using an improved particle swarm optimization (PSO) algorithm, and to bettor manipulate cooperative collision avoidance with other vehicles. First, we use PRESCAN and MATLAB/Simulink to conduct a united simulation, which constructs a CCAS composed of a PID controller, maneuver strategy judging modules, and a path planning module. Then we apply the improved PSO algorithm to optimize the PID controller based on the dynamic vehicle data obtained. Finally, we perform a simulation test of performance before and after the optimization of the PID controller, in which vehicles equipped with a CCAS undertake deceleration driving and steering under the two states of low speed (≤50 km/h) and high speed (≥100 km/h) cruising. The results show that the PID controller optimized using the proposed method can achieve not only the basic functions of a CCAS, but also improvements in vehicle dynamic stability, riding comfort, and fuel economy. 展开更多
关键词 Cooperative collision avoidance system (CCAS) Improved particle swarm optimization (PSO) pid controller Vehicle comfort Fuel economy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部