To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according...To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according to the previous experimental study on treble-pillar specimens,e.g.successive failure mode(SFM),domino failure mode(DFM)and compound failure mode(CFM).Based on the finite element code rock failure process analysis(RFPA^(2D)),numerical models of treble-pillar specimen with different mechanical properties were established to reproduce and verify the experimental results of the three CPF modes.Numerical results show that the elastic rebound of roofefloor system induced by pillar instability causes dynamic disturbance to adjacent pillars,resulting in sudden load increases and sudden jump displacement of adjacent pillars.The phenomena of load transfer in the roofemulti-pillarefloor system,as well as the induced accelerated damage behavior in adjacent pillars,were discovered and studied.In addition,based on the catastrophe theory and the proposed mechanical model of treble-pillar specimen edisc spring group system,a potential function that characterizes the evolution characteristics of roof emulti-pillarefloor system was established.The analytical expressions of sudden jump and energy release of treble-pillar specimenedisc spring group system of the three CPF modes were derived according to the potential function.The numerical and theoretical results show good agreement with the experimental results.This study further reveals the physical essence of load transfer during CPF of roof emulti-pillarefloor system,which provides references for mine design,construction and disaster prevention.展开更多
Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the s...Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational.展开更多
The Voronoi grain-based breakable block model(VGBBM)based on the combined finite-discrete element method(FDEM)was proposed to explicitly characterize the failure mechanism and predict the deformation behavior of hard-...The Voronoi grain-based breakable block model(VGBBM)based on the combined finite-discrete element method(FDEM)was proposed to explicitly characterize the failure mechanism and predict the deformation behavior of hard-rock mine pillars.The influence of the microscopic parameters on the macroscopic mechanical behavior was investigated using laboratory-scale models.The field-scale pillar models(width-to-height,W/H=1,2 and 3)were calibrated based on the empirically predicted stress-strain curves of Creighton mine pillars.The results indicated that as the W/H ratios increased,the VGBBM effectively predicted the transition from strain-softening to pseudo-ductile behavior in pillars,and explicitly captured the separated rock slabs and the V-shaped damage zones on both sides of pillars and conjugate shear bands in core zones of pillars.The volumetric strain field revealed significant compressional deformation in core zones of pillars.While the peak strains of W/H=1 and 2 pillars were relatively consistent,there were significant differences in the strain energy storage and release mechanism.W/H was the primary factor influencing the deformation and strain energy in the pillar core.The friction coefficient of the structural plane was also an important factor affecting the pillar strength and the weakest discontinuity angle.The fracture surface was controlled by the discontinuity angle and the friction coefficient.This study demonstrated the capability of the VGBBM in predicting the strengths and deformation behavior of hard-rock pillars in deep mine design.展开更多
Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and...Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and long ion transfer distance.Herein,this paper aims to address the issue by introducing MXene through a simple and scalable method for assembling graphene and realizing ultrahigh P doping content.The findings reveal that MXene and P-C bonds have a "pillar effect" on the structure of graphene,and the P-C bond plays a primary role.In addition,N/P co-doping introduces abundant defects,providing more active sites for K^(+) storage and facilitating K^(+) adsorption.As expected,the developed ultrahigh phosphorous/nitrogen co-doped flexible reduced graphene oxide/MXene(NPrGM) electrode exhibits remarkable reversible discharge capacity(554 mA hg^(-1) at 0.05 A g^(-1)),impressive rate capability(178 mA h g^(-1) at 2 A g^(-1)),and robust cyclic stability(0.0005% decay per cycle after 10,000 cycles at 2 A g^(-1)).Furthermore,the assembled activated carbon‖NPrGM potassium-ion hybrid capacitor(PIHC) can deliver an impressive energy density of 131 W h kg^(-1) and stable cycling performance with 98.1% capacitance retention after5000 cycles at 1 A g^(-1).Such a new strategy will effectively promote the practical application of graphene materials in PIBs/PIHCs and open new avenues for the scalable development of flexible films based on two-dimensional materials for potential applications in energy storage,thermal interface,and electromagnetic shielding.展开更多
The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect o...The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect of the first mining on the lateral abutment pressure distribution and evolution in wide pillars,an in-situ experiment,theoretical analysis and numerical simulation were performed.First,the field monitoring of lateral abutment pressure was conducted from the perspective of time and space in the Chahasu Coal Mine,Huangling No.2 Coal Mine and Lingdong Coal Mine during the first mining.Based on the field monitoring stress,a theoretical model was proposed to reveal the lateral abutment pressure distribution.The methodology was demonstrated through a case study.Aiming at the distribution mechanism,a numerical experiment was conducted through the finite-discrete element method(FDEM).Last,field observations of borehole fractures were performed to further study the damage distribution.In addition,two types of lateral abutment pressure evolution with mining advance were discussed.Suggestions on the stress monitoring layout were proposed as well.The results could provide foundations for strata control and disaster prevention in wide pillars in underground coal mines.展开更多
A variety of coal room and pillar mining methods have been efficiently practiced at depths of up to 500 m with least strata mechanics issues.However,for the first time,this method was trialled at depths of 850 e900 m ...A variety of coal room and pillar mining methods have been efficiently practiced at depths of up to 500 m with least strata mechanics issues.However,for the first time,this method was trialled at depths of 850 e900 m in CSM mine of Czech Republic.The rhomboid-shaped coal pillars with acute corners of 70,surrounded with 5.2 m wide and 3.5e4.5 m high mine roadways,were used.Pillars were developed in a staggered manner with their size variation in the Panel II from 83 m×25 m to 24 m×20 m(corner to corner)and Panel V from 35 m×30 m to 26 m×16 m.Coal seam inclined at 12was affected by the unusual slippery slickenside roof bands and sometimes in the floor levels with high vertical stress below strong and massive sandstone roof.In order to ensure safety,pillars in both the panels were continuously monitored using various geotechnical instruments measuring the induced stresses,side spalling and roof sagging.Both panels suffered high amounts of mining induced stress and pillar failure with side-spalling up to 5 m from all sides.Heavy fracturing of coal pillar sides was controlled by fully encapsulated steel bolts.Mining induced stress kept increasing with the progress of development of pillars and galleries.Instruments installed in the pillar failed to monitor actual induced stress due to fracturing of coal mass around it which created an apprehension of pillar failure up to its core due to high vertical mining induced stress.This risk was reduced by carrying out scientific studies including the three-dimensional numerical models calibrated with data from the instrumented pillar.An attempt has been made to study the behavior of coal pillars and their yielding characteristics at deeper cover based on field and simulation results.展开更多
Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safet...Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safety.This paper aims to develop hybrid support vector machine(SVM)models improved by three metaheuristic algorithms known as grey wolf optimizer(GWO),whale optimization algorithm(WOA)and sparrow search algorithm(SSA)for predicting the hard rock pillar stability.An integrated dataset containing 306 hard rock pillars was established to generate hybrid SVM models.Five parameters including pillar height,pillar width,ratio of pillar width to height,uniaxial compressive strength and pillar stress were set as input parameters.Two global indices,three local indices and the receiver operating characteristic(ROC)curve with the area under the ROC curve(AUC)were utilized to evaluate all hybrid models’performance.The results confirmed that the SSA-SVM model is the best prediction model with the highest values of all global indices and local indices.Nevertheless,the performance of the SSASVM model for predicting the unstable pillar(AUC:0.899)is not as good as those for stable(AUC:0.975)and failed pillars(AUC:0.990).To verify the effectiveness of the proposed models,5 field cases were investigated in a metal mine and other 5 cases were collected from several published works.The validation results indicated that the SSA-SVM model obtained a considerable accuracy,which means that the combination of SVM and metaheuristic algorithms is a feasible approach to predict the pillar stability.展开更多
Pillarless coal mining technology is a new practical technology.Based on the compensating mechanical behavior of the Negative Poisson’s Ratio(NPR)anchor cable on the roof,the roadway was successfully retained by the ...Pillarless coal mining technology is a new practical technology.Based on the compensating mechanical behavior of the Negative Poisson’s Ratio(NPR)anchor cable on the roof,the roadway was successfully retained by the top cutting and pressure relief technology.This study utilizes the Digital Speckle Monitoring(DIC monitoring),stress-strain monitoring,and infrared thermal imaging systems to conduct physical model experiment of similar materials from the displacement,stress-strain,and temperature fields to investigate in depth the fracture change law of the overlying rock.In addition,it uses FLAC3D numerical simulation to invert the surface displacement settlement.The results show that the non-pillar overhead mining under the 110 mining method has little influence on the rock crack in the middle of the coal seam,and the crack development area is mainly concentrated in the overlying rock mass of the upward coal seam.The compensatory mechanical behavior of NPR anchor cable and the dilatation characteristics of rock mass have a good effect of retaining roadway along goaf,and can also reduce surface settlement.The 110 mining method provides a scientific basis for ecological environment protection and the development of other kilometer deep soft rock high ground stress underground projects.展开更多
Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can sig...Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can significantly impact their strength and stability when mining below them,potentially leading to hydraulic support failure,surface subsidence,and rock bursting.To address this issue,the linkage between the failure and instability of residual coal pillars and rock strata during multi-seam mining is examined in this study.Key controls include residual pillar spalling,safety factor(f.),local mine stiffness(LMS),and the post-peak stiffness(k)of the residual coal pillar.Limits separating the two forms of failure,progressive versus dynamic,are defined.Progressive failure results at lower stresses when the coal pillar transitions from indefinitely stable(f,>1.5)to failing(f,<1.5)when the coal pillar can no longer remain stable for an extended duration,whereas sud-den(unstable)failure results when the strength of the pillar is further degraded and fails.The transition in mode of failure is defined by the LMS/k ratio.Failure transitions from quiescent to dynamic as LMS/k.<1,which can cause chain pillar instability propagating throughout the mine.This study provides theoretical guidance to define this limit to instability of residual coal pillars for multi-seam mining in similar mines.展开更多
The development of a multi-pillar pension insurance system is an effective solution for an aging society.Commercial pension insurance,as the third pillar of pension insurance,is an integral part of this system in Chin...The development of a multi-pillar pension insurance system is an effective solution for an aging society.Commercial pension insurance,as the third pillar of pension insurance,is an integral part of this system in China and can play a critical and complementary role in rural areas where support for the elderly is a more pressing concern and a second pillar of pension insurance remains absent.To this end,we first elaborate on the theoretical logic that commercial pension insurance can develop into one of the pillars of rural pension insurance.We then empirically test rural residents’willingness to participate in a commercial pension insurance plan(CPIP)in a probit model with household research data from rural areas in major labor-exporting provinces,such as Sichuan and Henan so as to explore whether commercial pension insurance has the potential to become one of the pillars of rural pension insurance.Our research findings can be synthesized in three points.First,rural residents out of agricultural production for five consecutive years are more willing to participate in a CPIP than other rural residents,indicating that progress in industrialization and urbanization can significantly boost such willingness.Second,the younger rural residents are more inclined to participate in a CPIP than the older generation.Third,income increases can significantly boost rural residents’willingness to participate in a CPIP.Thus,with progress in industrialization and urbanization and an increase in rural disposable income,commercial pension insurance has a promising potential in rural areas and can hopefully develop into one of the pillars of rural pension insurance.展开更多
Many states rely upon the Pennsylvania 1957 Gas Well Pillar Study to evaluate the coal barrier surrounding gas wells.The study included 77 gas well failure cases that occurred in the Pittsburgh and Freeport coal seams...Many states rely upon the Pennsylvania 1957 Gas Well Pillar Study to evaluate the coal barrier surrounding gas wells.The study included 77 gas well failure cases that occurred in the Pittsburgh and Freeport coal seams over a 25-year span.At the time,coal was mined using the room-and-pillar mining method with full or partial pillar recovery,and square or rectangle pillars surrounding the gas wells were left to protect the wells.The study provided guidelines for pillar sizes under different overburden depths up to 213 m(700 ft).The 1957 study has also been used to determine gas well pillar sizes in longwall mines since longwall mining began in the 1970 s.The original study was developed for room-and-pillar mining and could be applied to gas wells in longwall chain pillars under shallow cover.However,under deep cover,severe deformations in gas wells have occurred in longwall chain pillars.Presently,with a better understanding of coal pillar mechanics,new insight into subsidence movements induced by retreat mining,and advances in numerical modeling,it has become both critically important and feasible to evaluate the adequacy of the 1957 study for longwall gas well pillars.In this paper,the data from the 1957 study is analyzed from a new perspective by considering various factors,including overburden depth,failure location,failure time,pillar safety factor(SF),and floor pressure.The pillar SF and floor pressure are calculated by considering abutment pressure induced by full pillar recovery.A statistical analysis is performed to find correlations between various factors and helps identify the most significant factors for the stability of gas wells influenced by retreat mining.Through analyzing the data from the 1957 study,the guidelines for gas well pillars in the 1957 study are evaluated for their adequacy for roomand-pillar mining and their applicability to longwall mining.Numerical modeling is used to model the stability of gas wells by quantifying the mining-induced stresses in gas well casings.Results of this study indicate that the guidelines in the 1957 study may be appropriate for pillars protecting conventional gas wells in both room-and-pillar mining and longwall mining under overburden depths up to 213m(700 ft),but may not be sufficient for protective pillars under deep cover.The current evaluation of the 1957 study provides not only insights about potential gas well failures caused by retreat mining but also implications for what critical considerations should be taken into account to protect gas wells in longwall mining.展开更多
Acoustic emission (AE) technique is a useful tool for investigating rock damage mechanism, and is used to study the temporal-spatial evolution process of microcracks during the similar pillar material experiment. A ...Acoustic emission (AE) technique is a useful tool for investigating rock damage mechanism, and is used to study the temporal-spatial evolution process of microcracks during the similar pillar material experiment. A combined AE location algorithm was developed based on the Least square algorithm and Geiger location algorithm. The pencil break test results show that the location precision can meet the demand of microcrack monitoring. The 3D location of AE events can directly reflect the process of initiation, propagation and evolutionary of microcracks. During the loading process, stress is much likely concentrated on the area between pillar and roof of the specimen, where belongs to danger zone of macroscopic failure. When rock reaches its plastic deformation stage, AE events begin to decrease, which indicates that AE quiet period can be seen as precursor characteristic of rock failure.展开更多
The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability ...The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines.展开更多
We successfully constructed TiO_(2)-pillared multilayer graphene nanocomposites(T-MLGs)via a facile method as follows:dodecanediamine pre-pillaring,ion exchange(Ti4+pillaring),and interlayer in-situ formation of TiO_(...We successfully constructed TiO_(2)-pillared multilayer graphene nanocomposites(T-MLGs)via a facile method as follows:dodecanediamine pre-pillaring,ion exchange(Ti4+pillaring),and interlayer in-situ formation of TiO_(2) by hydrothermal method.TiO_(2) nanoparticles were distributed uniformly on the graphene interlayer.The special structure combined the advantages of graphene and TiO_(2) nanoparticles.As a result,T-MLGs with 64.3wt%TiO_(2) showed the optimum photodegradation rate and adsorption capabilities toward ciprofloxacin.The photodegradation rate of T-MLGs with 64.3wt%TiO_(2) was 78%under light-emitting diode light irradiation for 150 min.Meanwhile,the pseudofirst-order rate constant of T-MLGs with 64.3wt%TiO_(2) was 3.89 times than that of pristine TiO_(2).The composites also exhibited high stability and reusability after five consecutive photocatalytic tests.This work provides a facile method to synthesize semiconductor-pillared graphene nanocomposites by replacing TiO_(2) nanoparticles with other nanoparticles and a feasible means for sustainable utilization of photocatalysts in wastewater control.展开更多
Al-pillared interlayered montmorillonite (Al-PILM) was prepared using the artificial Na-montmorillonite from the Qingfengshan bentonite mine as a starting material mixed with Al-pillaring solutions.The microstructure ...Al-pillared interlayered montmorillonite (Al-PILM) was prepared using the artificial Na-montmorillonite from the Qingfengshan bentonite mine as a starting material mixed with Al-pillaring solutions.The microstructure of the materials was studied by an X-ray powder diffractometer and a Fourier transform infrared (FTIR) spectrometer.The results indicated that the basal spacing [d(001) value] of the materials was increased significantly to 1.9194 nm relative to Na-montmorillonite (1.2182 nm).After calcined for 2 h at 300℃,the basal spacing was stabilized at 1.8394 nm and the layered structure of the materials was not destroyed.Thermal analysis was conducted by a thermal gravimetry and differential thermal analysis (TG-DTA) instrument,it showed that Al-PILM lost physically adsorbed water below 230.6℃ and water formed by dehydroxylation of the pillars at around 497.1℃, with a peak of the phase transformation at 903.0℃.展开更多
Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recov...Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recovery increases in multiple-seam mining conditions.The hazards associated with pillar recovery in multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave.When pillar recovery is planned in multiple seams, it is critical to properly design the mining sequence and panel layout to minimize potential seam interaction.This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 21 m of interburden under about 305 m of depth of cover.The study finds that, for interburden thickness of 21 m, the multiple-seam mining influence zone in the lower seam is directly under the barrier pillar within about 30 m from the gob edge of the upper seam.The peak stress in the interburden transfers down at an angle of approximately 20°away from the gob, and the entries and crosscuts in the influence zone are subjected to elevated stress during development and retreat.The study also suggests that, for full pillar recovery in close-distance multiple-seam scenarios,it is optimal to superimpose the gobs in both seams, but it is not necessary to superimpose the pillars.If the entries and/or crosscuts in the lower seam are developed outside the gob line of the upper seam,additional roof and rib support needs to be considered to account for the elevated stress in the multiple-seam influence zone.展开更多
The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considere...The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considered before creating the model.To eliminate the boundary effect in a La Model pillar stability analysis,a suitable boundary buffer zone is needed around the model edge.The radius of influence(R)and the abutment load extent(D)are two major factors that affect the stresses and displacements calculated in LaM odel.To determine the optimum buffer zone extent,a database of case histories was analyzed using the La Model program.Values for R and D were varied until a buffer zone having negligible influence on the pillar stability factor(SF)of the active mining zone(AMZ)was determined.展开更多
基金financially supported by the National Key R&D Program of China(Grant No.2022YFC2903901)Enlisting and Leading Project of the Key Scientific and Technological Innovation in Heilongjiang Province,China(Grant No.2021ZXJ02A03,04)the North China University of Water Resources and Electric Power Launch Fund for High-level Talents Research(Grant No.40937).
文摘To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according to the previous experimental study on treble-pillar specimens,e.g.successive failure mode(SFM),domino failure mode(DFM)and compound failure mode(CFM).Based on the finite element code rock failure process analysis(RFPA^(2D)),numerical models of treble-pillar specimen with different mechanical properties were established to reproduce and verify the experimental results of the three CPF modes.Numerical results show that the elastic rebound of roofefloor system induced by pillar instability causes dynamic disturbance to adjacent pillars,resulting in sudden load increases and sudden jump displacement of adjacent pillars.The phenomena of load transfer in the roofemulti-pillarefloor system,as well as the induced accelerated damage behavior in adjacent pillars,were discovered and studied.In addition,based on the catastrophe theory and the proposed mechanical model of treble-pillar specimen edisc spring group system,a potential function that characterizes the evolution characteristics of roof emulti-pillarefloor system was established.The analytical expressions of sudden jump and energy release of treble-pillar specimenedisc spring group system of the three CPF modes were derived according to the potential function.The numerical and theoretical results show good agreement with the experimental results.This study further reveals the physical essence of load transfer during CPF of roof emulti-pillarefloor system,which provides references for mine design,construction and disaster prevention.
基金Financial support for this work was provided by the General Program and Youth Fund Program of the National Natural Science Foundation of China(Grant Nos.42377175 and 42002292).
文摘Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational.
基金the National Natural Science Foundation of China(No.42377172)the National Key Research and Development Plan Project of China(No.2023YFC2907204).
文摘The Voronoi grain-based breakable block model(VGBBM)based on the combined finite-discrete element method(FDEM)was proposed to explicitly characterize the failure mechanism and predict the deformation behavior of hard-rock mine pillars.The influence of the microscopic parameters on the macroscopic mechanical behavior was investigated using laboratory-scale models.The field-scale pillar models(width-to-height,W/H=1,2 and 3)were calibrated based on the empirically predicted stress-strain curves of Creighton mine pillars.The results indicated that as the W/H ratios increased,the VGBBM effectively predicted the transition from strain-softening to pseudo-ductile behavior in pillars,and explicitly captured the separated rock slabs and the V-shaped damage zones on both sides of pillars and conjugate shear bands in core zones of pillars.The volumetric strain field revealed significant compressional deformation in core zones of pillars.While the peak strains of W/H=1 and 2 pillars were relatively consistent,there were significant differences in the strain energy storage and release mechanism.W/H was the primary factor influencing the deformation and strain energy in the pillar core.The friction coefficient of the structural plane was also an important factor affecting the pillar strength and the weakest discontinuity angle.The fracture surface was controlled by the discontinuity angle and the friction coefficient.This study demonstrated the capability of the VGBBM in predicting the strengths and deformation behavior of hard-rock pillars in deep mine design.
基金financially supported by the National Natural Science Foundation of China (52172192)the Young Top-Notch Talent of National Ten Thousand Talent Program (W03070054)。
文摘Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and long ion transfer distance.Herein,this paper aims to address the issue by introducing MXene through a simple and scalable method for assembling graphene and realizing ultrahigh P doping content.The findings reveal that MXene and P-C bonds have a "pillar effect" on the structure of graphene,and the P-C bond plays a primary role.In addition,N/P co-doping introduces abundant defects,providing more active sites for K^(+) storage and facilitating K^(+) adsorption.As expected,the developed ultrahigh phosphorous/nitrogen co-doped flexible reduced graphene oxide/MXene(NPrGM) electrode exhibits remarkable reversible discharge capacity(554 mA hg^(-1) at 0.05 A g^(-1)),impressive rate capability(178 mA h g^(-1) at 2 A g^(-1)),and robust cyclic stability(0.0005% decay per cycle after 10,000 cycles at 2 A g^(-1)).Furthermore,the assembled activated carbon‖NPrGM potassium-ion hybrid capacitor(PIHC) can deliver an impressive energy density of 131 W h kg^(-1) and stable cycling performance with 98.1% capacitance retention after5000 cycles at 1 A g^(-1).Such a new strategy will effectively promote the practical application of graphene materials in PIBs/PIHCs and open new avenues for the scalable development of flexible films based on two-dimensional materials for potential applications in energy storage,thermal interface,and electromagnetic shielding.
基金We gratefully acknowledge financial support from the National Natural Science Foundation of China(NSFC)(No.51704097)Science Foundation of Henan Polytechnic University(No.J2021–2)+1 种基金Key Research and Development Program of Henan Province,China(No.202102310244)“Science and Technology to Help the Economy 2020”Key Project(No.SQ2020YFF0426364).
文摘The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect of the first mining on the lateral abutment pressure distribution and evolution in wide pillars,an in-situ experiment,theoretical analysis and numerical simulation were performed.First,the field monitoring of lateral abutment pressure was conducted from the perspective of time and space in the Chahasu Coal Mine,Huangling No.2 Coal Mine and Lingdong Coal Mine during the first mining.Based on the field monitoring stress,a theoretical model was proposed to reveal the lateral abutment pressure distribution.The methodology was demonstrated through a case study.Aiming at the distribution mechanism,a numerical experiment was conducted through the finite-discrete element method(FDEM).Last,field observations of borehole fractures were performed to further study the damage distribution.In addition,two types of lateral abutment pressure evolution with mining advance were discussed.Suggestions on the stress monitoring layout were proposed as well.The results could provide foundations for strata control and disaster prevention in wide pillars in underground coal mines.
基金supported by the European Structural and Investment Funds,Operational Programme Research,Development and Education,Programming 2014e2020 and Development for Innovations Operational Programme financed by the Structural Funds of the European Union and the Czech Republic Project for the long-term conceptual development of research organizations(RVO:68145535).
文摘A variety of coal room and pillar mining methods have been efficiently practiced at depths of up to 500 m with least strata mechanics issues.However,for the first time,this method was trialled at depths of 850 e900 m in CSM mine of Czech Republic.The rhomboid-shaped coal pillars with acute corners of 70,surrounded with 5.2 m wide and 3.5e4.5 m high mine roadways,were used.Pillars were developed in a staggered manner with their size variation in the Panel II from 83 m×25 m to 24 m×20 m(corner to corner)and Panel V from 35 m×30 m to 26 m×16 m.Coal seam inclined at 12was affected by the unusual slippery slickenside roof bands and sometimes in the floor levels with high vertical stress below strong and massive sandstone roof.In order to ensure safety,pillars in both the panels were continuously monitored using various geotechnical instruments measuring the induced stresses,side spalling and roof sagging.Both panels suffered high amounts of mining induced stress and pillar failure with side-spalling up to 5 m from all sides.Heavy fracturing of coal pillar sides was controlled by fully encapsulated steel bolts.Mining induced stress kept increasing with the progress of development of pillars and galleries.Instruments installed in the pillar failed to monitor actual induced stress due to fracturing of coal mass around it which created an apprehension of pillar failure up to its core due to high vertical mining induced stress.This risk was reduced by carrying out scientific studies including the three-dimensional numerical models calibrated with data from the instrumented pillar.An attempt has been made to study the behavior of coal pillars and their yielding characteristics at deeper cover based on field and simulation results.
基金supported by the National Natural Science Foundation Project of China(Nos.72088101 and 42177164)the Distinguished Youth Science Foundation of Hunan Province of China(No.2022JJ10073)The first author was funded by China Scholarship Council(No.202106370038).
文摘Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safety.This paper aims to develop hybrid support vector machine(SVM)models improved by three metaheuristic algorithms known as grey wolf optimizer(GWO),whale optimization algorithm(WOA)and sparrow search algorithm(SSA)for predicting the hard rock pillar stability.An integrated dataset containing 306 hard rock pillars was established to generate hybrid SVM models.Five parameters including pillar height,pillar width,ratio of pillar width to height,uniaxial compressive strength and pillar stress were set as input parameters.Two global indices,three local indices and the receiver operating characteristic(ROC)curve with the area under the ROC curve(AUC)were utilized to evaluate all hybrid models’performance.The results confirmed that the SSA-SVM model is the best prediction model with the highest values of all global indices and local indices.Nevertheless,the performance of the SSASVM model for predicting the unstable pillar(AUC:0.899)is not as good as those for stable(AUC:0.975)and failed pillars(AUC:0.990).To verify the effectiveness of the proposed models,5 field cases were investigated in a metal mine and other 5 cases were collected from several published works.The validation results indicated that the SSA-SVM model obtained a considerable accuracy,which means that the combination of SVM and metaheuristic algorithms is a feasible approach to predict the pillar stability.
基金the National Natural Science Foundation of China(No.42272204)the Fundamental Research Funds for the Central Universities(Grant No.2021JCCXDC02)+3 种基金the Gansu Province Science and Technology Major Project(19ZD2GA005)for their supportfinancially supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering(SKLGDUEK2020)Huaneng Group headquarters science and technology project(HNKJ21-H07)the Coal Burst Research Center of Jiangsu,China。
文摘Pillarless coal mining technology is a new practical technology.Based on the compensating mechanical behavior of the Negative Poisson’s Ratio(NPR)anchor cable on the roof,the roadway was successfully retained by the top cutting and pressure relief technology.This study utilizes the Digital Speckle Monitoring(DIC monitoring),stress-strain monitoring,and infrared thermal imaging systems to conduct physical model experiment of similar materials from the displacement,stress-strain,and temperature fields to investigate in depth the fracture change law of the overlying rock.In addition,it uses FLAC3D numerical simulation to invert the surface displacement settlement.The results show that the non-pillar overhead mining under the 110 mining method has little influence on the rock crack in the middle of the coal seam,and the crack development area is mainly concentrated in the overlying rock mass of the upward coal seam.The compensatory mechanical behavior of NPR anchor cable and the dilatation characteristics of rock mass have a good effect of retaining roadway along goaf,and can also reduce surface settlement.The 110 mining method provides a scientific basis for ecological environment protection and the development of other kilometer deep soft rock high ground stress underground projects.
基金supported by the Climbling Project of Taishan Scholar in Shandong Province (No.tspd20210313)National Natural Science Foundation of China (Grant No.51874190,52079068,41941019,52090081 and 52074168)+3 种基金Taishan Scholar in Shandong Province (No.tsqn202211150)Outstanding Youth Fund Project in Shandong Province (No.ZQ2022YQ49)the State Key Laboratory of Hydroscience and Engineering,China (No.2021-KY-04)support from the G.Albert Shoemaker endowment.
文摘Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can significantly impact their strength and stability when mining below them,potentially leading to hydraulic support failure,surface subsidence,and rock bursting.To address this issue,the linkage between the failure and instability of residual coal pillars and rock strata during multi-seam mining is examined in this study.Key controls include residual pillar spalling,safety factor(f.),local mine stiffness(LMS),and the post-peak stiffness(k)of the residual coal pillar.Limits separating the two forms of failure,progressive versus dynamic,are defined.Progressive failure results at lower stresses when the coal pillar transitions from indefinitely stable(f,>1.5)to failing(f,<1.5)when the coal pillar can no longer remain stable for an extended duration,whereas sud-den(unstable)failure results when the strength of the pillar is further degraded and fails.The transition in mode of failure is defined by the LMS/k ratio.Failure transitions from quiescent to dynamic as LMS/k.<1,which can cause chain pillar instability propagating throughout the mine.This study provides theoretical guidance to define this limit to instability of residual coal pillars for multi-seam mining in similar mines.
基金part of“Research in the Return of Migrant Workers to Major Labor Exporting Provinces and Corresponding Allocation of Old Age Support Resources in Rural Areas”(16BSH132)a program funded by the National Social Science Fund of China(NSSFC)“Research in the Path to,and Measures for,High-Quality Rural Development Driven by Entrepreneurial Agglomeration from the Perspective of Triple Coupling”(22FH54)。
文摘The development of a multi-pillar pension insurance system is an effective solution for an aging society.Commercial pension insurance,as the third pillar of pension insurance,is an integral part of this system in China and can play a critical and complementary role in rural areas where support for the elderly is a more pressing concern and a second pillar of pension insurance remains absent.To this end,we first elaborate on the theoretical logic that commercial pension insurance can develop into one of the pillars of rural pension insurance.We then empirically test rural residents’willingness to participate in a commercial pension insurance plan(CPIP)in a probit model with household research data from rural areas in major labor-exporting provinces,such as Sichuan and Henan so as to explore whether commercial pension insurance has the potential to become one of the pillars of rural pension insurance.Our research findings can be synthesized in three points.First,rural residents out of agricultural production for five consecutive years are more willing to participate in a CPIP than other rural residents,indicating that progress in industrialization and urbanization can significantly boost such willingness.Second,the younger rural residents are more inclined to participate in a CPIP than the older generation.Third,income increases can significantly boost rural residents’willingness to participate in a CPIP.Thus,with progress in industrialization and urbanization and an increase in rural disposable income,commercial pension insurance has a promising potential in rural areas and can hopefully develop into one of the pillars of rural pension insurance.
文摘Many states rely upon the Pennsylvania 1957 Gas Well Pillar Study to evaluate the coal barrier surrounding gas wells.The study included 77 gas well failure cases that occurred in the Pittsburgh and Freeport coal seams over a 25-year span.At the time,coal was mined using the room-and-pillar mining method with full or partial pillar recovery,and square or rectangle pillars surrounding the gas wells were left to protect the wells.The study provided guidelines for pillar sizes under different overburden depths up to 213 m(700 ft).The 1957 study has also been used to determine gas well pillar sizes in longwall mines since longwall mining began in the 1970 s.The original study was developed for room-and-pillar mining and could be applied to gas wells in longwall chain pillars under shallow cover.However,under deep cover,severe deformations in gas wells have occurred in longwall chain pillars.Presently,with a better understanding of coal pillar mechanics,new insight into subsidence movements induced by retreat mining,and advances in numerical modeling,it has become both critically important and feasible to evaluate the adequacy of the 1957 study for longwall gas well pillars.In this paper,the data from the 1957 study is analyzed from a new perspective by considering various factors,including overburden depth,failure location,failure time,pillar safety factor(SF),and floor pressure.The pillar SF and floor pressure are calculated by considering abutment pressure induced by full pillar recovery.A statistical analysis is performed to find correlations between various factors and helps identify the most significant factors for the stability of gas wells influenced by retreat mining.Through analyzing the data from the 1957 study,the guidelines for gas well pillars in the 1957 study are evaluated for their adequacy for roomand-pillar mining and their applicability to longwall mining.Numerical modeling is used to model the stability of gas wells by quantifying the mining-induced stresses in gas well casings.Results of this study indicate that the guidelines in the 1957 study may be appropriate for pillars protecting conventional gas wells in both room-and-pillar mining and longwall mining under overburden depths up to 213m(700 ft),but may not be sufficient for protective pillars under deep cover.The current evaluation of the 1957 study provides not only insights about potential gas well failures caused by retreat mining but also implications for what critical considerations should be taken into account to protect gas wells in longwall mining.
基金Projects (2013BAB02B01, 2013BAB02B03) supported by the Key Projects in the National Science & Technoogy Pillar Program During the Twelfth Five-Year Plan PeriodProjects (51274055, 51204030, 51204031, 51109035) supported by the National Natural Science Foundation of ChinaProjects (N110301006, N110501001, N110401003) supportecd by the Fundamental Research Funds for the Central Unviersity, China
文摘Acoustic emission (AE) technique is a useful tool for investigating rock damage mechanism, and is used to study the temporal-spatial evolution process of microcracks during the similar pillar material experiment. A combined AE location algorithm was developed based on the Least square algorithm and Geiger location algorithm. The pencil break test results show that the location precision can meet the demand of microcrack monitoring. The 3D location of AE events can directly reflect the process of initiation, propagation and evolutionary of microcracks. During the loading process, stress is much likely concentrated on the area between pillar and roof of the specimen, where belongs to danger zone of macroscopic failure. When rock reaches its plastic deformation stage, AE events begin to decrease, which indicates that AE quiet period can be seen as precursor characteristic of rock failure.
基金Project (50934006) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported by the National Basic Research Program of ChinaProject (CX2011B119) supported by the Graduated Students’ Research and Innovation Fund Project of Hunan Province of China
文摘The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines.
基金the Youth Fund of Hebei Province Education Department,China(No.QN2017117)the Hebei Natural Science Funds for the Joint Research of Iron and Steel,China(Nos.E2019209374,E2015209278).
文摘We successfully constructed TiO_(2)-pillared multilayer graphene nanocomposites(T-MLGs)via a facile method as follows:dodecanediamine pre-pillaring,ion exchange(Ti4+pillaring),and interlayer in-situ formation of TiO_(2) by hydrothermal method.TiO_(2) nanoparticles were distributed uniformly on the graphene interlayer.The special structure combined the advantages of graphene and TiO_(2) nanoparticles.As a result,T-MLGs with 64.3wt%TiO_(2) showed the optimum photodegradation rate and adsorption capabilities toward ciprofloxacin.The photodegradation rate of T-MLGs with 64.3wt%TiO_(2) was 78%under light-emitting diode light irradiation for 150 min.Meanwhile,the pseudofirst-order rate constant of T-MLGs with 64.3wt%TiO_(2) was 3.89 times than that of pristine TiO_(2).The composites also exhibited high stability and reusability after five consecutive photocatalytic tests.This work provides a facile method to synthesize semiconductor-pillared graphene nanocomposites by replacing TiO_(2) nanoparticles with other nanoparticles and a feasible means for sustainable utilization of photocatalysts in wastewater control.
文摘Al-pillared interlayered montmorillonite (Al-PILM) was prepared using the artificial Na-montmorillonite from the Qingfengshan bentonite mine as a starting material mixed with Al-pillaring solutions.The microstructure of the materials was studied by an X-ray powder diffractometer and a Fourier transform infrared (FTIR) spectrometer.The results indicated that the basal spacing [d(001) value] of the materials was increased significantly to 1.9194 nm relative to Na-montmorillonite (1.2182 nm).After calcined for 2 h at 300℃,the basal spacing was stabilized at 1.8394 nm and the layered structure of the materials was not destroyed.Thermal analysis was conducted by a thermal gravimetry and differential thermal analysis (TG-DTA) instrument,it showed that Al-PILM lost physically adsorbed water below 230.6℃ and water formed by dehydroxylation of the pillars at around 497.1℃, with a peak of the phase transformation at 903.0℃.
文摘Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recovery increases in multiple-seam mining conditions.The hazards associated with pillar recovery in multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave.When pillar recovery is planned in multiple seams, it is critical to properly design the mining sequence and panel layout to minimize potential seam interaction.This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 21 m of interburden under about 305 m of depth of cover.The study finds that, for interburden thickness of 21 m, the multiple-seam mining influence zone in the lower seam is directly under the barrier pillar within about 30 m from the gob edge of the upper seam.The peak stress in the interburden transfers down at an angle of approximately 20°away from the gob, and the entries and crosscuts in the influence zone are subjected to elevated stress during development and retreat.The study also suggests that, for full pillar recovery in close-distance multiple-seam scenarios,it is optimal to superimpose the gobs in both seams, but it is not necessary to superimpose the pillars.If the entries and/or crosscuts in the lower seam are developed outside the gob line of the upper seam,additional roof and rib support needs to be considered to account for the elevated stress in the multiple-seam influence zone.
文摘The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considered before creating the model.To eliminate the boundary effect in a La Model pillar stability analysis,a suitable boundary buffer zone is needed around the model edge.The radius of influence(R)and the abutment load extent(D)are two major factors that affect the stresses and displacements calculated in LaM odel.To determine the optimum buffer zone extent,a database of case histories was analyzed using the La Model program.Values for R and D were varied until a buffer zone having negligible influence on the pillar stability factor(SF)of the active mining zone(AMZ)was determined.