We investigate the contact characteristics of bi-layer thin films, Ti(20nm)/Al(200nm) on Si-doped n-type A10.6 Ga0.4 N films grown on sapphire substrate. The surface treatment was aqua regia boiling before metalli...We investigate the contact characteristics of bi-layer thin films, Ti(20nm)/Al(200nm) on Si-doped n-type A10.6 Ga0.4 N films grown on sapphire substrate. The surface treatment was aqua regia boiling before metallization and annealing after metallization at different conditions in N2 ambient. High resolution X-ray diffractometery analysis was carried out on the contacts and the surface interfaces of these conditions were compared. A specific contact resistivity pc was determined using the circular transmission line method via current-voltage measurements. A pc of 3.42 × 10^-4 Ω·cm^2 was achieved when annealed at 670℃ for 90s. Then, this ideal ohmic contact was used in back-illuminated solar-blind AlGaN p- i-n detectors and the detectors' performances, such as spectral responsivity, dark-current,and breakdown voltage were optimized.展开更多
Using two-step growth method and buffer layer annealing treatment,the double heterojunction structures of In_(0.82)Ga_(0.18) As epilayer capped with In As_(0.6)P0.4 layer were prepared on In P substrate by low pressur...Using two-step growth method and buffer layer annealing treatment,the double heterojunction structures of In_(0.82)Ga_(0.18) As epilayer capped with In As_(0.6)P0.4 layer were prepared on In P substrate by low pressure metal organic chemical vapor deposition(LP-MOCVD).Based on the high quality In_(0.82)Ga_(0.18) As structures,the In_(0.82)Ga_(0.18) As PIN photodetector with cut-off wavelength of 2.56 μm at room temperature was fabricated by planar semiconductor technology,and the device performance was investigated in detail.The typical dark current at the reverse bias VR=10 m V and the resistance area product R0 A are 5.02 μA and 0.29 ?·cm2 at 296 K and 5.98 n A and 405.2 ?·cm2 at 116 K,respectively.The calculated peak detectivities of the In_(0.82)Ga_(0.18) As photodetector are 1.21×1010 cm·Hz1/2/W at 296 K and 4.39×1011 cm·Hz1/2/W at 116 K respectively,where the quantum efficiency η=0.7 at peak wavelength is supposed.The results show that the detection performance of In_(0.82)Ga_(0.18) As prepared by two-step growth method can be improved greatly.展开更多
High-performance and tensile-strained germanium (Ge) p-i-n photodetector is demonstrated on Si substrate. The epi- taxial Ge layers were prepared in an ultrahigh vacuum chemical vapor deposition (UHV-CVD) system u...High-performance and tensile-strained germanium (Ge) p-i-n photodetector is demonstrated on Si substrate. The epi- taxial Ge layers were prepared in an ultrahigh vacuum chemical vapor deposition (UHV-CVD) system using low tem- perature Ge buffer technique. The devices were fabricated by in situ doping and using Si as passivation layer between Ge and metal, which can improve the ohmic contact and realize the high doping. The results show that the dark current of the photodetector with diameter of 24 lain is about 2.5 × 10.7 μA at the bias voltage of-1 V, and the optical responsivity is 0.1 A/W at wavelength of 1.55 μm. The 3 dB bandwidth (BW) of 4 GHz is obtained for the photodetector with diameter of 24 μm at reverse bias voltage of 1 V. The long diffusion time of minority carrier in n-type Ge and the large contact resistance in metal/Ge contacts both affect the performance of Ge photodetectors.展开更多
基金The Joint Laboratory of Quantum Optoelectronics and the Theory of Bivergentum and Beijing International Scientific and Technological Cooperation Base of Information Optoelectronics and Nanoheterogeneous Structure,the National Natural and Science Foundation of China(Nos.61574019,61674018,61674020)the Fund of the State Key Laboratory of Information Photonics and Optical Communications,the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130005130001)
文摘We investigate the contact characteristics of bi-layer thin films, Ti(20nm)/Al(200nm) on Si-doped n-type A10.6 Ga0.4 N films grown on sapphire substrate. The surface treatment was aqua regia boiling before metallization and annealing after metallization at different conditions in N2 ambient. High resolution X-ray diffractometery analysis was carried out on the contacts and the surface interfaces of these conditions were compared. A specific contact resistivity pc was determined using the circular transmission line method via current-voltage measurements. A pc of 3.42 × 10^-4 Ω·cm^2 was achieved when annealed at 670℃ for 90s. Then, this ideal ohmic contact was used in back-illuminated solar-blind AlGaN p- i-n detectors and the detectors' performances, such as spectral responsivity, dark-current,and breakdown voltage were optimized.
基金supported by the National Natural Science Foundation of China(Nos.11174224 and 11404246)the Natural Science Foundation of Shandong Province(Nos.BS2015DX015 and ZR2013FM001)+1 种基金the Science and Technology Development Program of Shandong Province(No.2013YD01016)the Higher School Science and Technology Program of Shandong Province(Nos.J13LJ54 and J15LJ54)
文摘Using two-step growth method and buffer layer annealing treatment,the double heterojunction structures of In_(0.82)Ga_(0.18) As epilayer capped with In As_(0.6)P0.4 layer were prepared on In P substrate by low pressure metal organic chemical vapor deposition(LP-MOCVD).Based on the high quality In_(0.82)Ga_(0.18) As structures,the In_(0.82)Ga_(0.18) As PIN photodetector with cut-off wavelength of 2.56 μm at room temperature was fabricated by planar semiconductor technology,and the device performance was investigated in detail.The typical dark current at the reverse bias VR=10 m V and the resistance area product R0 A are 5.02 μA and 0.29 ?·cm2 at 296 K and 5.98 n A and 405.2 ?·cm2 at 116 K,respectively.The calculated peak detectivities of the In_(0.82)Ga_(0.18) As photodetector are 1.21×1010 cm·Hz1/2/W at 296 K and 4.39×1011 cm·Hz1/2/W at 116 K respectively,where the quantum efficiency η=0.7 at peak wavelength is supposed.The results show that the detection performance of In_(0.82)Ga_(0.18) As prepared by two-step growth method can be improved greatly.
基金supported by the National Natural Science Foundation of China(Nos.61474094 and 61176092)
文摘High-performance and tensile-strained germanium (Ge) p-i-n photodetector is demonstrated on Si substrate. The epi- taxial Ge layers were prepared in an ultrahigh vacuum chemical vapor deposition (UHV-CVD) system using low tem- perature Ge buffer technique. The devices were fabricated by in situ doping and using Si as passivation layer between Ge and metal, which can improve the ohmic contact and realize the high doping. The results show that the dark current of the photodetector with diameter of 24 lain is about 2.5 × 10.7 μA at the bias voltage of-1 V, and the optical responsivity is 0.1 A/W at wavelength of 1.55 μm. The 3 dB bandwidth (BW) of 4 GHz is obtained for the photodetector with diameter of 24 μm at reverse bias voltage of 1 V. The long diffusion time of minority carrier in n-type Ge and the large contact resistance in metal/Ge contacts both affect the performance of Ge photodetectors.