期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于叶片双层辐射传输机理的水稻叶绿素含量反演
1
作者 王楠 陈春玲 +3 位作者 相爽 金忠煜 白驹驰 于丰华 《农业工程学报》 EI CAS CSCD 北大核心 2024年第17期171-178,共8页
水稻是主要的粮食作物,对其生长发育过程中叶绿素含量进行精准监测,在指导田间管理方面具有十分重要的意义。叶片辐射传输模型能够有效地模拟水稻叶片光谱信息,描述叶片各参数对光谱反射率的影响,具有较强的机理性,可作为基于物理驱动... 水稻是主要的粮食作物,对其生长发育过程中叶绿素含量进行精准监测,在指导田间管理方面具有十分重要的意义。叶片辐射传输模型能够有效地模拟水稻叶片光谱信息,描述叶片各参数对光谱反射率的影响,具有较强的机理性,可作为基于物理驱动方式反演水稻叶片叶绿素含量的重要机理模型。PIOSL(PROSPECT consider the internal optical structure of the leaves)模型假设叶片内部是由两层不同的光学特性层叠加而成,其叶片内部结构的假设更加符合植物的实际生长状况。为了验证PIOSL模型反演水稻叶片叶绿素的可行性,并为作物理化参量反演提供新思路,该研究利用此模型对水稻叶片叶绿素含量开展反演研究。首先利用PIOSL模型构建查找表,筛选查找表中与实测光谱较为接近的模拟样本数据,利用SVM(support vector machine)构建分类预测模型,判定查找表中随机生成的参数组合是否符合叶片实际情况,并构建新的查找表数据集。将改进后的查找表按7:3的比例随机拆分为训练集和测试集,通过WOAELM(whale optimization algorithm,WOA;extreme learning machine,ELM)模型反演水稻叶片叶绿素含量。结果表明:基于PIOSL-WOA-ELM构建的反演模型,模型R2和RMSE分别为0.977和2.356μg/cm^(2),与PROSPECT-WOA-ELM模型的反演精度均在0.9以上,且优于传统的多元回归模型。由此看来,利用PIOSL-WOA-ELM模型对水稻叶片叶绿素含量进行反演是可行的,可为精准反演水稻叶绿素在叶片中的分布提供新的思路,进而科学有效地开展田间管理。 展开更多
关键词 高光谱 模型 piosl 叶绿素含量 WOA-ELM SVM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部