期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Monitoring shear deformation of sliding zone via fiber Bragg grating and particle image velocimetry
1
作者 Deyang Wang Honghu Zhu +3 位作者 Guyu Zhou Wenzhao Yu Baojun Wang Wanhuan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期231-241,共11页
Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between... Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors. 展开更多
关键词 LANDSLIDE Shear band Fiber bragg grating(FBG) particle image velocimetry(piv) Sinusoidal model Strain‒displacement proportional COEFFICIENT
下载PDF
Particle image velocimetry (PIV) measurements of tip vortex wake structure of wind turbine 被引量:6
2
作者 肖京平 武杰 +1 位作者 陈立 史喆羽 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期729-738,共10页
Large-view flow field measurements using the particle image velocimetry (PIV) technique with high resolution CCD cameras on a rotating 1/8 scale blade model of the NREL UAE phase VI wind turbine are conducted in the... Large-view flow field measurements using the particle image velocimetry (PIV) technique with high resolution CCD cameras on a rotating 1/8 scale blade model of the NREL UAE phase VI wind turbine are conducted in the engineering-oriented q53.2 m wind tunnel. The motivation is to establish the database of the initiation and development of the tip vortex to study the flow structure and mechanism of the wind turbine. The results show that the tip vortex first moves inward for a very short period and then moves outward with the wake expansion, while its vorticity decreases with time after being trailed from the trailing edge of the blade tip, and then increases continuously with the rapid rolling-up to form a strong tip vortex. The measurements also indicate that the downstream movement of the tip vortex is nearly linear in the very near wake under the test condition. 展开更多
关键词 wind turbine particle image velocimetry piv tip vortex flow field
下载PDF
TWO-DIMENSIONAL PARTICLE IMAGE VELOCIMETRY(PIV) MEASUREMENTS IN A TRANSPARENT CENTRIFUGAL PUMP 被引量:5
3
作者 YangHua GuChuangang WangTong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第1期98-102,共5页
A special transparent centrifugal pump is designed. Detailed opticalmeasurements of the flow inside the rotating passages of a five-bladed shroud centrifugal pumpimpeller have been performed by using two-dimensional p... A special transparent centrifugal pump is designed. Detailed opticalmeasurements of the flow inside the rotating passages of a five-bladed shroud centrifugal pumpimpeller have been performed by using two-dimensional particle image velocimetry (PIV). The flow issurveyed at three load conditions q_V/q_(Vd) = 0.4, q_V/q_(Vd) = 1.0, q_V/q_(Vd) = 1.5,respectively. As a result, phase averaged PIV velocity vector maps on three planes between hub andshroud of the impeller are presented. At design load, the mean field of relative velocity ispredominantly vane congruent, showing well-behaved flow without separation. The distributions of therelative velocity on different plane along the pump shaft are very different and there is always alow velocity zone near the pressure-side of the blade at both low and design flow rate, but thelow-velocity-zone at the low flow rate is much larger than that at the design one. The studydemonstrates that the PIV technique is efficient in providing reliable and detailed velocity dataover a full impeller passage. 展开更多
关键词 particle image velocimetry (piv) Centrifugal pump MEASUREMENTS
下载PDF
Particle Image Velocimetry Measurement of the Flow Field in the Play of the Drilling Pump Valve 被引量:7
4
作者 YANG Guoan YIN Xin +1 位作者 SONG Zheng HUANG Cong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期27-37,共11页
The failure of a drilling pump is always due to the break of the drilling pump valve, which is one of the most important but also the weakest parts of the drilling pump. Over the decades, the degradation of drilling p... The failure of a drilling pump is always due to the break of the drilling pump valve, which is one of the most important but also the weakest parts of the drilling pump. Over the decades, the degradation of drilling pump valves has been investigated extensively and various failure mechanisms have been proposed. However, no experimental test on the fluid has been successfully performed to support some of these mechanisms. In this paper, tests of the flow within the valve play are carried out to investigate the factors resulting in the failure of the valve. In the tests, particle image velocimetry(PIV) technology is employed to measure the flow field distribution of the valve play in the model. From these tests, the distributions of velocity and vorticity of fluid in 'various valves with different valve angles and different valve lifts are obtained, from which the features of flow fields are derived and generalized. Subsequently, a general rule of the influence of valve angles and valve lifts on the flow velocity is concluded according to chart analyses of maximal velocities and mean velocities. Finally, an analysis is made on the possibility of valve failure caused by erosion and abrasion in a working valve, with the application of the failure mechanisms of drilling pump valves. PIV measurement improves the study on the failure of the drilling pump valve, and the results show good agreement with previous computational fluid dynamics(CFD) simulations. 展开更多
关键词 drilling pump valve flow field particle image velocimetrypiv valve failure
下载PDF
3D Particle Image Velocimetry Test of Inner Flow in a Double Blade Pump Impeller 被引量:5
5
作者 LIU Houlin WANG Kai +3 位作者 YUAN Shouqi TAN Minggao WANG Yong RU Weimin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期491-497,共7页
The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at ... The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at present.To reveal inner flow characteristics in double blade pump impeller under off-design and design conditions,inner flows in a double blade pump impeller,whose specific speed is 111,are measured under the five off-design conditions and design condition by using 3D PIV test technology.In order to ensure the accuracy of the 3D PIV test,the external trigger synchronization system which makes use of fiber optic and equivalent calibration method are applied.The 3D PIV relative velocity synthesis procedure is compiled by using Visual C++ 2005.Then absolute velocity distribution and relative velocity distribution in the double blade pump impeller are obtained.Test results show that vortex exists in each condition,but the location,size and velocity of vortex core are different.Average absolute velocity value of impeller outlet increases at first,then decreases,and then increases again with increase of flow rate.Again average relative velocity values under 0.4,0.8,and 1.2 design condition are higher than that under 1.0 design condition,while under 0.6 and 1.4 design condition it is lower.Under low flow rate conditions,radial vectors of absolute velocities at impeller outlet and blade inlet near the pump shaft decrease with increase of flow rate,while that of relative velocities at the suction side near the pump shaft decreases.Radial vectors of absolute velocities and relative velocities change slightly under the two large flow rate conditions.The research results can be applied to instruct the hydraulic optimization design of double blade pumps. 展开更多
关键词 double blade pump IMPELLER inner flow 3D particle image velocimetrypiv test
下载PDF
A Review of Particle Image Velocimetry for Fish Migration
6
作者 S. M. Sayeed-Bin-Asad T. Staffan Lundström +1 位作者 A. G. Andersson J. Gunnar I. Hellström 《World Journal of Mechanics》 2016年第4期131-149,共19页
Understanding the flow characteristic in fishways is crucial for efficient fish migration. Flow characteristic measurements can generally provide quantitative information of velocity distributions in such passages;Par... Understanding the flow characteristic in fishways is crucial for efficient fish migration. Flow characteristic measurements can generally provide quantitative information of velocity distributions in such passages;Particle Image Velocimetry (PIV) has become one of the most versatile techniques to disclose flow fields in general and in fishways, in particular. This paper firstly gives an overview of fish migration along with fish ladders and then the application of PIV measurements on the fish migration process. The overview shows that the quantitative and detailed turbulent flow information in fish ladders obtained by PIV is critical for analyzing turbulent properties and validating numerical results. 展开更多
关键词 particle Image velocimetry (piv) Fish Migration FISHWAYS
下载PDF
Finite Element Numerical Simulation and PIV Measurement of Flow Field inside Metering-in Spool Valve 被引量:12
7
作者 GAO Dianrong QIAO Haijun LU Xianghui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期102-108,共7页
The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at th... The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at three different valve openings. For FEM numerical simulation, the stream function ψ-vorticity ω forms of continuity and Navier-Stokes equations are employed and FEM is applied to discrete the equations. Homemade simulation codes are executed to compute the values of stream function and vorticity at each node in the flow domain, then according to the correlation between stream function and velocity components, the velocity vectors of the whole field are calculated. For PIV experiment, pulse Nd: YAG laser is exploited to generate laser beam, cylindrical and spherical lenses are combined each other to produce 1.0 mm thickness laser sheet to illuminate the object plane, Polystyrene spherical particle with diameter of 30-50 μm is seeded in the fluid as a tracing particles, Kodak ES 1.0 CCD camera is employed to capture the images of interested, the images are processed with fast Fourier transform (FFT) cross-correlation algorithm and the processing results is displayed. Both results of numerical simulation and PIV experimental show that there are three main areas in the spool valve where vortex is formed. Numerical results also indicate that the valve opening have some effects on the flow structure of the valve. The investigation is helpful for qualitatively analyzing the energy loss, noise generating, steady state flow forces and even designing the geometry structure and flow passage. 展开更多
关键词 flow field spool valve finite element method (FEM) particle image velocimetry piv
下载PDF
Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator
8
作者 郑博睿 刘园鹏 +3 位作者 喻明浩 金元中 张倩 陈全龙 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期348-355,共8页
Tri-electrode sliding discharge(TED)plasma actuators are formed by adding a direct current(DC)exposed electrode to conventional dielectric barrier discharge(DBD)plasma actuators.There are three TED modes depending on ... Tri-electrode sliding discharge(TED)plasma actuators are formed by adding a direct current(DC)exposed electrode to conventional dielectric barrier discharge(DBD)plasma actuators.There are three TED modes depending on the polarity and amplitude of the DC supply:DBD discharge,extended discharge and sliding discharge.This paper evaluates the electrical,aerodynamic and mechanical characteristics of a TED plasma actuator based on energy analysis,particle image velocimetry experiments and calculations using the Navier-Stokes equation.The flow control performances of different discharge modes are quantitatively analyzed based on characteristic parameters.The results show that flow control performance in both extended discharge and sliding discharge is more significant than that of DBD,mainly because of the significantly higher(up to 141%)body force of TED compared with DBD.However,conductivity loss is the primary power loss caused by the DC polarity for TED discharge.Therefore,power consumption can be reduced by optimizing the dielectric material and thickness,thus improving the flow control performance of plasma actuators. 展开更多
关键词 plasma flow control tri-electrode sliding discharge particle image velocimetry(piv) performance evaluation
下载PDF
SIMULTANEOUS PIV/PTV MEASUREMENTS OF BUBBLE AND PARTICLE PHASES IN GAS-LIQUID TWO-PHASE FLOW BASED ON IMAGE SEPARATION AND RECONSTRUCTION 被引量:9
9
作者 QUJian-wu MURAlYuichi YAMAMOTOFujio 《Journal of Hydrodynamics》 SCIE EI CSCD 2004年第6期756-766,共11页
A Particle Image Velocimetry (PIV) method based on the image separation andreconstruction with the median filter and triangular Bezier patch was proposed to measure multiplevelocity fields from single-camera images in... A Particle Image Velocimetry (PIV) method based on the image separation andreconstruction with the median filter and triangular Bezier patch was proposed to measure multiplevelocity fields from single-camera images in the present study. The method was examined on syntheticPIV images with the Green-Taylor two-phase vortex flows and the test results showed high accuracyand highly correct tracking percent compared with the exact solution. An experiment of the bubblyjet flow was also conducted as a practical demonstration of the present method. As a result, it isconfirmed from the simulation image examination and the experimental measurement that the proposedmethod shows a good performance in the measurement of bubble and particle phases. 展开更多
关键词 multiphase flow flow visualization image separation image reconstruction particle image velocimetry (piv) triangular bezier patch
原文传递
Tracking characteristics of tracer particles for PIV measurements in supersonic flows 被引量:5
10
作者 Chen Fang Liu Hong +1 位作者 Yang Zifeng Hu Hui 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第2期577-585,共9页
The tracking characteristics of tracer particles for particle image velocimetry(PIV) measurements in supersonic flows were investigated.The experimental tests were conducted at Mach number 4 in Multi-Mach Wind Tunne... The tracking characteristics of tracer particles for particle image velocimetry(PIV) measurements in supersonic flows were investigated.The experimental tests were conducted at Mach number 4 in Multi-Mach Wind Tunnel(MMWT) of Shanghai Jiao Tong University.The motion of tracer particles carried by the supersonic flow across Shockwaves was theoretically modelled,and then their aerodynamic characteristics with compressibility and rarefaction effects were evaluated.According to the proposed selection criterion of tracer particles,the PIV measured results clearly identified that the Shockwave amplitude is in good agreement with theory and Schlieren visualizations.For the tracer particles in nanoscales,their effective aerodynamic sizes in the diagnostic zone can be faithfully estimated to characterize the tracking capability and dispersity performance based on their relaxation motion across oblique Shockwaves.On the other hand,the seeding system enabled the tracer particles well-controlled and repeatable dispersity against the storage and humidity. 展开更多
关键词 particle Image velocimetrypiv SEEDING Supersonic flow Tracers Tracking characteristics
原文传递
Particle image velocimetry measurements of vortex structures in stilling basin of multi-horizontal submerged jets 被引量:7
11
作者 陈剑刚 张建民 +2 位作者 许唯临 栗帅 何小泷 《Journal of Hydrodynamics》 SCIE EI CSCD 2013年第4期556-563,共8页
Measurements of turbulent flow fields in a stilling basin of multi-horizontal submerged jets were made with the single- camera Particle Image Velocimetry (PIV). The particle images were captured, processed, and subs... Measurements of turbulent flow fields in a stilling basin of multi-horizontal submerged jets were made with the single- camera Particle Image Velocimetry (PIV). The particle images were captured, processed, and subsequently used to characterize the flow in terms of the 2-D velocity and vorticity distributions. This study shows that the maximum close-to-bed velocity in the stilling basin is approximately reduced by 60%, comparing to the jet velocity at the outlet of orifices. The jet velocity is distributed evenly at the latter half of the stilling basin and the time-averaged velocity of the cross section is reduced by 77%-85%, comparing to the jet velocity at the outlet of orifices. These results show that the vortices with horizontal axes are continuously repeated during the form-merge-split-disappear process. The vertical vortices are continuously formed and disappeared, they appear randomly near the slab and intermittently reach the slab of the stilling basin. The range of these vortices is small. Vortices with horizontal axes and ver- tical vortices do not coincide in space and the vortices with horizontal axes only affect the position of the tail of the vertical vortices attached to the slab of the stilling basin. 展开更多
关键词 multi-horizontal submerged jets particle Image velocimetry piv vortex structure stilling basin hydraulic jump
原文传递
Influence of Blade Outlet Angle on Inner Flow Field of Centrifugal Pump Transporting Salt Aqueous Solution 被引量:5
12
作者 YANG Minguan KANG Can DONG Xiang LIU Dong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期912-917,共6页
During transportation of salt aqueous solutions with centrifugal pump, crystallization phenomenon is frequently encountered. For this kind of two-phase flow, it is difficult to be accurately modeled since there are va... During transportation of salt aqueous solutions with centrifugal pump, crystallization phenomenon is frequently encountered. For this kind of two-phase flow, it is difficult to be accurately modeled since there are various medium properties and phase change characteristics. In view of experiment, several problems are hampering the implementation of precise measurement. Influences of blade outlet angle and medium temperature on crystallization rate were studied. Sodium sulfate solution was applied to simulate practical fluid in chemical industry. Particle image velocimetry(PIV) was employed to measure velocity distributions in rotating impeller. Crystallization processes in three impellers with different blade outlet angles were investigated. Relations among crystallization and flow parameters such as temperature and velocity were obtained. With the same blade wrap angle, when blade outlet angle is larger, diffusion of single flow passage gets stronger, relative velocity at blade outlet decreases and large scale vortex tends to appear near the blade working surface. For the impact of volume effect of particle phase on fluid viscosity, both liquid and solid phase velocities decrease with continual forming and growing of crystal particles. Velocity of solid phase is greater than that of liquid phase and its direction leans more closely to blade working surface. Solid particles tend to move towards blade working surface, as is more obvious in the impeller with large blade outlet angle. Therefore, collision between solid particles with stem part of blade working surface is more intensive in impeller with large blade outlet angle. Concerning transportation of salt aqueous solution, accurate PIV measurement is conducted in centrifugal impellers with different blade outlet angles. The results are useful and instructive in relevant engineering design and operation. 展开更多
关键词 centrifugal pump flow with crystallization blade outlet angle particle image velocimetrypiv
下载PDF
Experimental evaluation of mechanically stabilized earth walls with recycled crumb rubbers 被引量:8
13
作者 Matin Jalali Moghadam Amirali Zad +1 位作者 Nima Mehrannia Nader Dastaran 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期947-957,共11页
Traditional techniques for treatment of waste rubber, such as burning, generate some highly non- degradable synthetic materials that cause unrepairable environmental damages by releasing heavy metals, such as arsenic,... Traditional techniques for treatment of waste rubber, such as burning, generate some highly non- degradable synthetic materials that cause unrepairable environmental damages by releasing heavy metals, such as arsenic, chromium, lead, manganese and nickel. For this, scrap tires are used as light- weight alternative materials in many engineering applications, such as retaining wall backfilling. In the present study, 90 laboratory models were prepared to evaluate the stability of mechanically stabilized earth (MSE) walls with plate anchors. Then, the bearing capacity and horizontal displacements of the retaining walls were monitored by exerting a static loading to investigate the effects of adding different contents (5 wt%, 10 wt%, 15 wt% and 20 wt%) of recycled crumb rubber (RCR) to the fill of a mechanically stabilized retaining wall with plate anchors. To visualize the critical slip surface of the wall, the particle image velocimetry (PIV) technique was employed. Results showed that the circular anchor plates almost continually provided a higher bearing capacity and wall stability than the square plates. Moreover, the backfill with 15 wt% RCR provided the maximum bearing capacity of the wall. Increasing the weight percentage of RCR to 20 wt% resulted in a significant reduction in horizontal displacement of the wall, which occurred due to the decrease in lateral earth pressure against the whole walls. An increase in RCR content resulted in the decrease in the formation of failure wedge and the expansion of the wall slip surface, and the failure wedge did not form in the sand mixtures with 15 wt% and 20 wt% RCRs. 展开更多
关键词 Mechanically stabilized earth (MSE) wall Plate anchor Recycled crumb rubber (RCR) particle image velocimetry piv
下载PDF
Rapid velocity reduction and drift potential assessment of off-nozzle pesticide droplets 被引量:3
14
作者 Shidong Xue Jingkun Han +4 位作者 Xi Xi Junyi Zhao Zhong Lan Rongfu Wen Xuehu Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第6期243-254,共12页
The droplet velocity and diameter significantly affect both the spatial drift loss and the interfacial deposition behaviors, thus determining the ultimate utilization efficiency during pesticide spraying.Investigating... The droplet velocity and diameter significantly affect both the spatial drift loss and the interfacial deposition behaviors, thus determining the ultimate utilization efficiency during pesticide spraying.Investigating the spatial velocity and diameter evolutions can reveal the mechanism of drift loss and guide to design regulation strategy. Here, we explored the spatial velocity distribution of droplets after leaving the nozzle by particle image velocimetry technology and particle tracking model, considering that the effect of nozzle configuration and the air velocity. It shows that all droplets decelerate rapidly with the velocity attenuation ratio ranging from 50% to 80% within the region of 200 mm below the nozzle.The spatial velocity evolution differences between droplets in crossflow are determined by the competition of vertical drag force and net gravity, and the drag force sharply increases as the droplet diameter decreases, especially for that smaller than 150 μm. Based on the spatial evolution differences of the droplet velocity and diameter, a functional adjuvant was added to the liquid for improving the diameter distribution. And the drift loss was significantly reduced due to the reduction of the proportion of easily drifting droplets. 展开更多
关键词 Spray droplets particle image velocimetry(piv) particle size distribution Multiphase flow Pesticide drift
下载PDF
RECENT PROGRESS ON PARTICLE IMAGE VELOCIMETRY IN CHINA 被引量:2
15
作者 LIU Ying-zheng CAO Zhao-min 《Journal of Hydrodynamics》 SCIE EI CSCD 2006年第1期11-19,共9页
An up-to-date review of recent progress on Particle Image Velocimetry (PIV) instrumentations was extensively presented in the paper. Around 80 literatures were referenced. Among various aspects of PIV advances, the ... An up-to-date review of recent progress on Particle Image Velocimetry (PIV) instrumentations was extensively presented in the paper. Around 80 literatures were referenced. Among various aspects of PIV advances, the present concern was mainly placed on progresses of advanced algorithms and microscopic PIV. Attention was specifically directed toward contributions of domestic researchers to these subjects, which were stressed throughout the discussion. In addition, diverse applications of PIV technology in China, e. g., turbulence measurement, hydrodynamics, rotating flows, two-phase flows, were specifically summarized. 展开更多
关键词 particle Image velocimetry piv algorithm microscopic piv REVIEW
原文传递
Unsteady flow structure of an airfoil in ground effect 被引量:2
16
作者 钱建林 代钦 《Journal of Shanghai University(English Edition)》 CAS 2010年第3期228-234,共7页
Particle image velocimetry (PIV) experimental results of wake flow structure of a NACA0012 airfoil with small attack angle mounted above water surface are introduced.The experiment was carried out in a small-scale w... Particle image velocimetry (PIV) experimental results of wake flow structure of a NACA0012 airfoil with small attack angle mounted above water surface are introduced.The experiment was carried out in a small-scale wind-wave tunnel.The diameter of wind-wave tunnel test section is 1.7 m (long) × 0.4 m (width) × 0.4 m (height).The flow fields around the airfoil were measured under four diffierent conditions by varying the distance between the airfoil and the water surface.The attack angle of the airfoil was kept 10- during the experiment.For each experimental condition,the time series of particle images was captured to calculate continuous evolution of the velocity fields.The velocity fields were ensemble averaged to get the statistic parameters such as mean velocity and vorticity.Typical instantaneous velocity fields for each case are introduced to show the basic flow structure of wind surface flow separation.The aerodynamic loads acting on the airfoil are analyzed qualitatively according to the mean vorticity distribution in the flow field based on the theory of vorticity aerodynamics.The results indicate that the flow structures and drag/lift force of the airfoil alter remarkably with the changing distance between the airfoil and water surface. 展开更多
关键词 NACA0012 airfoil water surface mean vorticity field particle image velocimetry piv measurement ground effect
下载PDF
EXPERIMENTAL INVESTIGATION OF TIP CLEARANCE FLOW FOR AN AXIAL FLOW FAN ROTOR 被引量:5
17
作者 GUO Qiang ZHU Xiaocheng DU Zhaohui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期376-382,共7页
The flow field in the tip region of an axial ventilation fan is investigated with a particle image velocimeter (PIV) system at the design condition. Flow fields with three different tip clearances are surveyed on th... The flow field in the tip region of an axial ventilation fan is investigated with a particle image velocimeter (PIV) system at the design condition. Flow fields with three different tip clearances are surveyed on three different circumferential planes, respectively. The phase-locked average method is used to investigate the generation and the development of a tip leakage vortex. The result from PIV system is compared with that from a particle dynamics anemometer(PDA) system. Both data are in good agreement and the structure of the tip leakage vortex for the rotor is illustrated. The characteristic of a leakage vortex is described in both velocity vectors and vortical contours. The unsteadiness of the leakage vortex and the position of the vortex are surveyed in detail, which interprets the discrepancy between the numerical simulation and PDA experimental results to a certain extent. The center loci of tip leakage vortex at different times and the mean center loci of the leakage vortex are displayed particularly. Finally, the trajectories of the tip leakage vortex by the experimental measurement are compared with predictions from the existing models for high speed and high-pressure compressors and turbines when appropriately interpreted. A good agreement is obtained. 展开更多
关键词 Axial ventilation fan Tip leakage vortex particle image velocimetry piv Vortex center trajectory
下载PDF
Experimental investigation of turbulent flows around high-rise structure foundations and implications on scour 被引量:1
18
作者 Dong-fang Liang Hao Jia +1 位作者 Yang Xiao Sai-yu Yuan 《Water Science and Engineering》 EI CAS CSCD 2022年第1期47-56,共10页
Many studies have been undertaken to predict local scour around offshore high-rise structure foundations(HRSFs),which have been used in constructing the Donghai Wind Farm in China.However,there have been few works on ... Many studies have been undertaken to predict local scour around offshore high-rise structure foundations(HRSFs),which have been used in constructing the Donghai Wind Farm in China.However,there have been few works on the turbulent flow that drives the scour process.In this study,the characteristics of the turbulent flow fields around an HRSF were investigated using the particle image velocimetry technique.The mean flow,vorticity,and turbulence intensity were analyzed in detail.The relationship between the flow feature and scour development around an HRSF was elaborated.The results showed that the flow velocity increased to its maximum value near the third row of the pile group.The shear layer and wake vortices could not be fully developed downstream of the last row of the piles at small Reynolds numbers.The strong flow and turbulent fluctuation near the third piles explained the existence of a longtail scour pattern starting from the HRSF shoulders and a trapezoidal deposition region directly downstream of HRSF.This laboratory experiment gains insight into the mechanism of the turbulent flow around HRSFs and provides a rare dataset for numerical model verifications. 展开更多
关键词 High-rise structure foundations(HRSFs) Turbulent flow fields particle image velocimetry(piv) SCOUR Sediment transport
下载PDF
COMPUTATIONAL AND EXPERI-MENTAL STUDY ON TIP LEAKAGE VORTEX OF CIRCUMFERENTIAL SKEWED BLADES 被引量:4
19
作者 LI Yang OUYANG Hua DU Zhaohui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期82-87,共6页
In the steady operation condition, the experiments and the numerical simulations are used to investigate the tip leakage flow fields in three low pressure axial flow fans with three kinds of circumferential skewed rot... In the steady operation condition, the experiments and the numerical simulations are used to investigate the tip leakage flow fields in three low pressure axial flow fans with three kinds of circumferential skewed rotors, including the radial rotor, the forward-skewed rotor and the back- ward-skewed rotor. The three-dimensional viscous flow fields of the fans are computed. In the experiments, the two-dimensional plane particle image velocimetry (PIV) system is used to measure the flow fields in the tip region of three different pitchwise positions of each fan. The results show that the computational results agree well with the experimental data in the flow field of the tip region of each fan. The tip leakage vortex core segments based on method of the eigenmode analysis can display clearly some characteristics of the tip leakage vortex, such as the origination position of tip leak- age vortex, the development of vortex strength, and so on. Compared with the radial rotor, the other two skewed rotors can increase the stability of the tip leakage vortex and the increment in the forward-skewed rotor is more than that in the backward-skewed one. Among the tip leakage vortices of the three rotors, the velocity of the vortex in the forward-skewed rotor is th6 highest in the circumferential direction and the lowest in the axial direction. 展开更多
关键词 Low pressure axial flow fan Tip leakage vortex particle image velocimetry piv Eigenmode analysis
下载PDF
Particle image velocimetry measurement of velocity distribution at inlet duct of waterjet self-propelled ship model 被引量:1
20
作者 龚杰 郭春雨 +1 位作者 吴铁成 赵大刚 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第5期879-893,共15页
A vehicle-mounted three-dimensional underwater particle image velocimetry(PIV) device is used in a towing tank to measure the velocity distribution of the inlet duct of a waterjet ship model in a self-propulsion tes... A vehicle-mounted three-dimensional underwater particle image velocimetry(PIV) device is used in a towing tank to measure the velocity distribution of the inlet duct of a waterjet ship model in a self-propulsion test. The following points are shown through a comparison of the influences of the stationary and free states of the ship model on the measured results:(1) during the test, the ship attitude will change, specifically, the ship model will heave and trim,(2) the degree of freedom disturbs the processing of the pixel images enough to distort the subsequent image processing,(3) the stationary state of the ship model is the optimal mode for measuring the velocity distribution using the PIV device, and(4) if the changes must be considered, the man-made heaving and trimming may be pre-applied, and be made a corrected stationary mode. In addition, the momentum effect coefficient and the energy effect coefficient are calculated in a non-uniform inflowing state, and the related factors affecting the two coefficients are analyzed. The test results show that the pumping action of the waterjet creates a transverse vector in the cross-sectional speed, which increases the non-uniformity of the inflow. These results could help to establish the design requirements for a waterjet-propelled ship type. 展开更多
关键词 particle image velocimetrypiv velocity distribution profile degree of freedom transverse vector
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部