The endoplasmic reticulum is the central organelle within a eukaryotic cell where newly synthesized proteins are processed and properly folded. An excess of unfolded or mis-folded proteins induces ER stress signalling...The endoplasmic reticulum is the central organelle within a eukaryotic cell where newly synthesized proteins are processed and properly folded. An excess of unfolded or mis-folded proteins induces ER stress signalling pathways. Usually this means a pro-survival strategy for the cell, whereas under extended stress conditions the ER stress signalling pathways have a pro-apoptotic function. CK2 plays a key role in the regulation of the pro-survival as well as the proapoptotic ER stress signalling by directly modulating the activities of members of the ER stress signalling pathways by phosphorylation, regulating the expression of the key factors of the signalling pathways or binding to regulator proteins. The present review will summarize the state of the art in this new emerging field.展开更多
Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the m...Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the mitochondrial inner membrane,and its role in Parkinson’s disease remains unclear.Protein kinase R(PKR)-like endoplasmic reticulum kinase(PERK)is a factor that regulates cell fate during endoplasmic reticulum stress.Parkin is regulated by PERK and is a target of the unfolded protein response.It is unclear whether PERK regulates PHB2-mediated mitophagy thro ugh Parkin.In this study,we established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of Parkinson’s disease.We used adeno-associated virus to knockdown PHB2 expression.Our res ults showed that loss of dopaminergic neurons and motor deficits were aggravated in the MPTP-induced mouse model of Parkinson’s disease.Ove rexpression of PHB2 inhibited these abnormalities.We also established a 1-methyl-4-phenylpyridine(MPP+)-induced SH-SY5Y cell model of Parkinson’s disease.We found that ove rexpression of Parkin increased co-localization of PHB2 and microtubule-associated protein 1 light chain 3,and promoted mitophagy.In addition,MPP+regulated Parkin involvement in PHB2-mediated mitophagy through phosphorylation of PERK.These findings suggest that PHB2 participates in the development of Parkinson’s disease by intera cting with endoplasmic reticulum stress and Parkin.展开更多
Aim Recent evidence has revealed that Eukaryotic elongation factor-2 kinase (eEF2K) activity may confer cancer cell adaptation to metabolic stress, and high expression of eEF2K is found in several types of cancer. T...Aim Recent evidence has revealed that Eukaryotic elongation factor-2 kinase (eEF2K) activity may confer cancer cell adaptation to metabolic stress, and high expression of eEF2K is found in several types of cancer. Therefore, eEF2K may contribute to carcinogenesis and represent a promising therapeutic target; however, inhibi- tion of eEF2K for cancer drug discovery still remains in its infancy. This study aimed at developing a series of eEF2K inhibitor as candidate anti-tumor drugs in breast cancer and illustrating the possible mechanisms of its anti- tumor activity in vitro and in vivo. Methods In silico screening, structure modifications, MTT assay and molecular dynamics (MD) simulations were applied for the discovery of the novel eEF2K inhibitor (BL-EKI03). Observa- tions of cell morphology were executed through several methods including ER-traeker, MDC and Hoeehst 33258 staining and GFP-LC3 transfeetion. Flow eytometrie analyses of MDC and Annexin V/PI were used for quantifica- tion of autophagy and apoptosis ratio. Western blot and ITRAQ analysis were used to explore the detailed mecha- nisms of BL-EKI03-induced ER stress, autophagie death and apoptosis in breast cancer cells. Furthermore, an in vivo xenograft mouse model was established for validating the anti-tumor efficacy of BL-EKI03. Results Firstly, a novel eEF2K inhibitor (BL-EKI03) with a good affinity for eEF2K was eventually discovered after computational screening and synthesis of a series of candidate compounds targeting eEF2K. Subsequently, our results demonstra- ted that BL-EKI03 has remarkable anti-proliferative activities and induces endoplasmie retieulum (ER) stress, au- tophagy and apoptosis in MCF-7 and MDA-MB-436 cells. More importantly, the mechanism for BL-EKI03-indueed autophagie death involves eEF2K-mediated AMPK-mTOR-ULK complex pathways. The proteomies analyses and ex-perimental validation revealed that the BL-EKI03-induced mechanism was also involved BIRC6, BNIP1, SNAP29 and Bif-1, which might be regulated by eEF2K. Moreover, BL-EKI03 exerted its anti-tumor activities without re- markable toxicity, and it also induced autophagy and apoptosis by targeting eEF2K in fifo. Conclusion In this study, a novel eEF2K inhibitor (BL-EKI03) was discovered with remarkable anti-proliferative activities and in- duced endoplasmic reticulum (ER) stress, autophagy and apoptosis of breast cancer in vitro and in fifo. These findings highlight a new small-molecule eEF2K inhibitor (BL-EKI03) that has the potential to impact future breast cancer therapy.展开更多
文摘The endoplasmic reticulum is the central organelle within a eukaryotic cell where newly synthesized proteins are processed and properly folded. An excess of unfolded or mis-folded proteins induces ER stress signalling pathways. Usually this means a pro-survival strategy for the cell, whereas under extended stress conditions the ER stress signalling pathways have a pro-apoptotic function. CK2 plays a key role in the regulation of the pro-survival as well as the proapoptotic ER stress signalling by directly modulating the activities of members of the ER stress signalling pathways by phosphorylation, regulating the expression of the key factors of the signalling pathways or binding to regulator proteins. The present review will summarize the state of the art in this new emerging field.
基金supported by the Key Science and Technology Research of Henan Province,No.222102310351(to JW)Luoyang 2022 Medical and Health Guiding Science and Technology Plan Project,No.2022057Y(to JY)Henan Medical Science and Technology Research Program Province-Ministry Co-sponsorship,No.SBGJ202002099(to JY)。
文摘Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the mitochondrial inner membrane,and its role in Parkinson’s disease remains unclear.Protein kinase R(PKR)-like endoplasmic reticulum kinase(PERK)is a factor that regulates cell fate during endoplasmic reticulum stress.Parkin is regulated by PERK and is a target of the unfolded protein response.It is unclear whether PERK regulates PHB2-mediated mitophagy thro ugh Parkin.In this study,we established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of Parkinson’s disease.We used adeno-associated virus to knockdown PHB2 expression.Our res ults showed that loss of dopaminergic neurons and motor deficits were aggravated in the MPTP-induced mouse model of Parkinson’s disease.Ove rexpression of PHB2 inhibited these abnormalities.We also established a 1-methyl-4-phenylpyridine(MPP+)-induced SH-SY5Y cell model of Parkinson’s disease.We found that ove rexpression of Parkin increased co-localization of PHB2 and microtubule-associated protein 1 light chain 3,and promoted mitophagy.In addition,MPP+regulated Parkin involvement in PHB2-mediated mitophagy through phosphorylation of PERK.These findings suggest that PHB2 participates in the development of Parkinson’s disease by intera cting with endoplasmic reticulum stress and Parkin.
文摘Aim Recent evidence has revealed that Eukaryotic elongation factor-2 kinase (eEF2K) activity may confer cancer cell adaptation to metabolic stress, and high expression of eEF2K is found in several types of cancer. Therefore, eEF2K may contribute to carcinogenesis and represent a promising therapeutic target; however, inhibi- tion of eEF2K for cancer drug discovery still remains in its infancy. This study aimed at developing a series of eEF2K inhibitor as candidate anti-tumor drugs in breast cancer and illustrating the possible mechanisms of its anti- tumor activity in vitro and in vivo. Methods In silico screening, structure modifications, MTT assay and molecular dynamics (MD) simulations were applied for the discovery of the novel eEF2K inhibitor (BL-EKI03). Observa- tions of cell morphology were executed through several methods including ER-traeker, MDC and Hoeehst 33258 staining and GFP-LC3 transfeetion. Flow eytometrie analyses of MDC and Annexin V/PI were used for quantifica- tion of autophagy and apoptosis ratio. Western blot and ITRAQ analysis were used to explore the detailed mecha- nisms of BL-EKI03-induced ER stress, autophagie death and apoptosis in breast cancer cells. Furthermore, an in vivo xenograft mouse model was established for validating the anti-tumor efficacy of BL-EKI03. Results Firstly, a novel eEF2K inhibitor (BL-EKI03) with a good affinity for eEF2K was eventually discovered after computational screening and synthesis of a series of candidate compounds targeting eEF2K. Subsequently, our results demonstra- ted that BL-EKI03 has remarkable anti-proliferative activities and induces endoplasmie retieulum (ER) stress, au- tophagy and apoptosis in MCF-7 and MDA-MB-436 cells. More importantly, the mechanism for BL-EKI03-indueed autophagie death involves eEF2K-mediated AMPK-mTOR-ULK complex pathways. The proteomies analyses and ex-perimental validation revealed that the BL-EKI03-induced mechanism was also involved BIRC6, BNIP1, SNAP29 and Bif-1, which might be regulated by eEF2K. Moreover, BL-EKI03 exerted its anti-tumor activities without re- markable toxicity, and it also induced autophagy and apoptosis by targeting eEF2K in fifo. Conclusion In this study, a novel eEF2K inhibitor (BL-EKI03) was discovered with remarkable anti-proliferative activities and in- duced endoplasmic reticulum (ER) stress, autophagy and apoptosis of breast cancer in vitro and in fifo. These findings highlight a new small-molecule eEF2K inhibitor (BL-EKI03) that has the potential to impact future breast cancer therapy.