In this paper, a mechanism about the variability of the L-H transition power thresh- old PL-H is proposed which is based on the ion orbit losses. Only in the edge where there are enough ion orbit losses and the negati...In this paper, a mechanism about the variability of the L-H transition power thresh- old PL-H is proposed which is based on the ion orbit losses. Only in the edge where there are enough ion orbit losses and the negative radial electric field Er is high enough can the H-mode be triggered. The ion orbit losses are determined by the ion in the loss region under certain edge conditions. For different mass A and different charge Z, the critical loss energy E Z2/A in the loss region. In H and D charges, because the D+ loss region is larger than H+, it can be deduced that the PL-H of H is larger than that of D. In a 4He discharge, experiment finds there exist a considerable number of 4He1+ in the plasma edge. The actual ion orbit losses are determined by the mixing ratio of a He1+ and 4He2+. The 4He1+ loss region is larger than that of 4He2+, and the loss region of D+ interposes between 4He1+ and 4He2+. Different 4He1+ content can cause the edge ion losses in a 4He discharge to be greater than, less than or equal to that in a D discharge. So a 4He discharge can exhibit multiple experimental phenomena in the PL-H.展开更多
Near-infrared and mid-infrared spectroscopies were currently used to analyze natural compounds. During the last ten years various multiblocks methods were developed such as Concatenated PLS, Hierarchical-PLS (H-PLS), ...Near-infrared and mid-infrared spectroscopies were currently used to analyze natural compounds. During the last ten years various multiblocks methods were developed such as Concatenated PLS, Hierarchical-PLS (H-PLS), and MultiBlock-PLS (MB-PLS). These three algorithms were used to analyze 55 lavender (Lavandula angustifolia) essential oil samples. The results obtained were compared to the ones obtained respectively in NIR and MIR ranges. The accuracies of the models depend on the spectroscopic technique, pretreatment and the PLS methods. The results showed that the choice of the factor numbers used to build the multiblock models was the most important parameter for the H-PLS and MB-PLS methods.展开更多
基金supported by National Natural Science Foundation of China(No.11175210)
文摘In this paper, a mechanism about the variability of the L-H transition power thresh- old PL-H is proposed which is based on the ion orbit losses. Only in the edge where there are enough ion orbit losses and the negative radial electric field Er is high enough can the H-mode be triggered. The ion orbit losses are determined by the ion in the loss region under certain edge conditions. For different mass A and different charge Z, the critical loss energy E Z2/A in the loss region. In H and D charges, because the D+ loss region is larger than H+, it can be deduced that the PL-H of H is larger than that of D. In a 4He discharge, experiment finds there exist a considerable number of 4He1+ in the plasma edge. The actual ion orbit losses are determined by the mixing ratio of a He1+ and 4He2+. The 4He1+ loss region is larger than that of 4He2+, and the loss region of D+ interposes between 4He1+ and 4He2+. Different 4He1+ content can cause the edge ion losses in a 4He discharge to be greater than, less than or equal to that in a D discharge. So a 4He discharge can exhibit multiple experimental phenomena in the PL-H.
文摘Near-infrared and mid-infrared spectroscopies were currently used to analyze natural compounds. During the last ten years various multiblocks methods were developed such as Concatenated PLS, Hierarchical-PLS (H-PLS), and MultiBlock-PLS (MB-PLS). These three algorithms were used to analyze 55 lavender (Lavandula angustifolia) essential oil samples. The results obtained were compared to the ones obtained respectively in NIR and MIR ranges. The accuracies of the models depend on the spectroscopic technique, pretreatment and the PLS methods. The results showed that the choice of the factor numbers used to build the multiblock models was the most important parameter for the H-PLS and MB-PLS methods.