Aim Polylactic acid (PLA) or polylactide-co-glycolide (PLGA) was used asbiodegradable and biocom-patible carriers to achieve sustained release ofestradial-PLGA/PLA-Microspheres (E_2-PLGA/PLA-MS). THF was added in the ...Aim Polylactic acid (PLA) or polylactide-co-glycolide (PLGA) was used asbiodegradable and biocom-patible carriers to achieve sustained release ofestradial-PLGA/PLA-Microspheres (E_2-PLGA/PLA-MS). THF was added in the organic phase to study itseffects on the properties of MS. Methods MS were formed by an emulsification-solvent extractionmethod with mixture of ethyl acetate (EtoAc) and tetrahydrofuran (THF) as the organic solvents, andthen the properties and in vitro drug release behavior were examined. Results The results indicatedthat the drug loading efficiency decreased when THF added, but when the ratio of EtoAc was more than50% , there was no obvious effect of THF ratio, but the particle size increased accordingly. Thecarriers' properties and the drug contents were the main factors influencing the in vitro drugrelease. Conclusions By controlling the technology and formulation, we can get sustained-release E_2biodegradable microsperes with proper particle size, drug content and low burst-release, althoughTHF with readily solubility in water was used in the organic phase.展开更多
We developed poly lactic-co-glycolic acid(PLGA) microspheres loaded with cefquinome and tested their effectiveness in a mouse model. The microspheres were prepared by optimizing several key parameters such as PLGA m...We developed poly lactic-co-glycolic acid(PLGA) microspheres loaded with cefquinome and tested their effectiveness in a mouse model. The microspheres were prepared by optimizing several key parameters such as PLGA molecular weight, drug/polymer ratio, internal water volume and ethyl acetate. Drug loading efficiency, stability, in vitro release and tissue distribution in mouse were evaluated. The average particle size of the microspheres was 27.84 μm. The drug loading efficiency was 64.57%. The in vitro release of cefquinome from microspheres after 4 h was about 40% compared with over 90% for the drug alone. The concentration of cefquinome in lung reached 25 μg/g 0.25 h after injection, and kept at 10 μg/g 4 h after injection. However, the concentration of cefquinome was very low in other organs even 0.25 h after injection. In conclusion, Cefquinome-loaded PLGA microspheres are compatible as an effective lung-targeting drug delivery system and have a good sustained release efficacy.展开更多
The nanoparticles of polylactide (PLA) and poly(lactide-co-glycolide) (PLGA) were prepared by the bi-nary organic solvent diffusion method. The yield, particle size and size distribution of these nanoparticles wereeva...The nanoparticles of polylactide (PLA) and poly(lactide-co-glycolide) (PLGA) were prepared by the bi-nary organic solvent diffusion method. The yield, particle size and size distribution of these nanoparticles wereevaluated. The yield of nanoparticles prepared by this method is over 90%, and the average size of the nanoparticlesis between 130-180 nm. In order to clarify the effect of the organic solvent used in the system on nanoparticle yieldand size, the cloud points of PLA and PLGA were examined by cloud point titration. The results indicate that theyields of nanoparticles increase with the increase of ethanol in the acetone solution and attain the maximum at thecloud point of ethanol, while the size of nanoparticles decreases with the increase of ethanol in the acetone solutionand attains the minimum at the cloud point of ethanol. The optimal composition ratio of binary organic solvents coin-cides to that near the cloud point and the optimal condition of binary organic solvents can be predicted.展开更多
The object of the study was to develop a quick and reproducible accelerated in vitro release method to predict and deduce the function of the real time(37 °C) release for long acting PLGA microspheres. The method...The object of the study was to develop a quick and reproducible accelerated in vitro release method to predict and deduce the function of the real time(37 °C) release for long acting PLGA microspheres. The method could be described in several steps. First, the release of the microspheres were studied using the sample and separate method at 37 °C with normal orbital shaking and elevated temperatures with magnetic stirring to further accelerate the release. Second, the most similar profile at elevated temperatures with the real time release was chosen with the help of the n value in the fitted Korsmeyer-Peppas Function. Third,the Weibull function and conversion ratio were used to deduce the function of real time release according to the chosen profile at elevated temperatures. The key point in this study was to provide a quick and precise method to predict the real time release for long acting progesterone PLGA microspheres. So the elevated temperatures coupled with magnetic stirring were used to accelerate the release further, and when there have many similar release profiles with the real time release at elevated temperatures, releasing time at elevated temperatures and the R2 of the final deduced function will be used to help choosing the most similar release profile with the real time release. Four different types of progesterone PLGA microspheres were used to verify the method, and all the deduced function correlated well with the real time releases, for R2 = 0.9912, 0.9781, 0.9918 and 0.9972, respectively.展开更多
This study aimed to prepare poly(D, L-lactic-co-glycolic acid) microspheres(PLGA-Ms)by a modified solid-in-oil-in-water(S/O/W) multi-emulsion technique in order to achieve sustained release with reduced initial burst ...This study aimed to prepare poly(D, L-lactic-co-glycolic acid) microspheres(PLGA-Ms)by a modified solid-in-oil-in-water(S/O/W) multi-emulsion technique in order to achieve sustained release with reduced initial burst and maintain efficient drug concentration for a prolonged period of time. Composite PLGA microspheres containing exenatideencapsulated lecithin nanoparticles(Ex-NPs-PLGA-Ms) were obtained by initial fabrication of exenatide-loaded lecithin nanoparticles(Ex-NPs) via the alcohol injection method,followed by encapsulation of Ex-NPs into PLGA microspheres. Compared to Ms prepared by the conventional water-in-oil-in-water(W/O/W) technique(Ex-PLGA-Ms), Ex-NPs-PLGAMs showed a more uniform particle size distribution, reduced initial burst release, and sustained release for over 60 d in vitro. Cytotoxicity studies showed that Ms prepared by both techniques had superior biocompatibility without causing any detectable cytotoxicity.In pharmacokinetic studies, the effective drug concentration was maintained for over 30 d following a single subcutaneous injection of two types of Ms formulation in rats, potentially prolonging the therapeutic action of Ex. In addition, administration of Ex-NPs-PLGA-Ms resulted in a more smooth plasma concentration-time profile with a higher area under the curve(AUC) compared to that of Ex-PLGA-Ms. Overall, Ex-NPs-PLGA-Ms prepared by the novel S/O/W method could be a promising sustained drug release system with reduced initial burst release and prolonged therapeutic efficacy.展开更多
The purpose of this study was to develop a PLGA microspheres-based donepezil(DP)formulation which was expected to sustain release of DP for one week with high encapsulation efficiency(EE).DP derived from donepezil hyd...The purpose of this study was to develop a PLGA microspheres-based donepezil(DP)formulation which was expected to sustain release of DP for one week with high encapsulation efficiency(EE).DP derived from donepezil hydrochloride was encapsulated in PLGA microspheres by the O/W emulsion-solvent evaporation method.The optimized formulation which avoided the crushing of microspheres during the preparation process was characterized in terms of particle size,morphology,drug loading and EE,physical state of DP in the matrix and in vitro and in vivo release behavior.DP microspheres were prepared successfully with average diameter of 30m,drug loading of 15.92±0.31%and EE up to 78.79±2.56%.Scanning electron microscope image showed it has integrated spherical shape with no drug crystal and porous on its surface.Differential scanning calorimetry and X-ray diffraction results suggested DP was in amorphous state or molecularly dispersed in microspheres.The Tg of PLGA was increased with the addition of DP.The release profile in vitro was characterized with slow but continuous release that lasted for about one week and fitted well with first-order model,which suggested the diffusion governing release mechanism.After single-dose administration of DP microspheres via subcutaneous injection in rats,the plasma concentration of DP reached peak concentration at 0.50 d,and then declined gradually,but was still detectable at 15 d.A good correlation between in vitro and in vivo data was obtained.The results suggest the potential use of DP microspheres for treatment of Alzheimer’s disease over long periods.展开更多
When a protein is encapsulated into poly( DL -lactide-co-glycolide)(PLGA) microspheres by means of the double-emulsion method,the harsh microspheres formation process including ultrasonification,exposure to an organic...When a protein is encapsulated into poly( DL -lactide-co-glycolide)(PLGA) microspheres by means of the double-emulsion method,the harsh microspheres formation process including ultrasonification,exposure to an organic solvent and a polymer may cause the denaturation of the protein. In this study,we investigated the enzymatic activity change and the effect of the excipients on the stability of recombinant human Cu,Zn-superoxide dismutase(rhCu,Zn-SOD) during the emulsification. The specific activity recovery was found to be concentration dependent and the excipients involved such as PEG 600 and Tween 20,and trehalose were shown to increase the stability of rhCu,Zn-SOD. The protein structural integrity within the microspheres was analyzed by FTIR. The structure of rhCu,Zn-SOD within PLGA microspheres containing trehalose was found to be similar to that of the native solid state,whereas the protein encapsulated during the preparation in the absence of any excipient changed due to the possible hydrophobic interaction with the polymer. The results suggest that a rational stability strategy for protein to be encapsulated into microspheres should aim at different processes.展开更多
A new method has been developed to prepare microspheres by blending PLGA and dextran polymers (PLDEX) using solvent evaporation technique. Recombinant hepatitis B vaccine (HBsAg) was incorporated in to the double poly...A new method has been developed to prepare microspheres by blending PLGA and dextran polymers (PLDEX) using solvent evaporation technique. Recombinant hepatitis B vaccine (HBsAg) was incorporated in to the double polymeric system. The objective of this study was to investigate the feasibility of PLDEX polymeric microspheres as an adjuvant for hepatitis B vaccine (HBsAg). The present study demonstrates the immunogenicity profile of HBsAg encapsulated in PLDEX and compared their efficacy with alum adsorbed HBsAg. The single intramuscular injection of HBsAg loaded PLDEX microspheres in Wistar rats resulted satisfactory antibody titers. Based on in vivo findings PLDEX microspheres were able induce satisfactory immune response.展开更多
The combination of micro-carriers and polymer scaffolds as promising bone grafts have attracted considerable interest in recent decades.The poly(L-lactic acid)/poly(lactic-co-glycolic acid)/polycaprolactone(PLLA/PLGA/...The combination of micro-carriers and polymer scaffolds as promising bone grafts have attracted considerable interest in recent decades.The poly(L-lactic acid)/poly(lactic-co-glycolic acid)/polycaprolactone(PLLA/PLGA/PCL)composite scaffold with porous structure was fabricated by thermally induced phase separation(TIPS).Dexamethasone(DEX)was incorporated into PLGA microspheres and then loaded on the PLLA/PLGA/PCL scaffoldtopreparethedesiredcompositescaffold.The physicochemical properties of the prepared composite scaffold were characterized.The morphology of rat bone marrow mesenchymal stem cells(BMSCs)grown on scaffolds was observed using scanning electron microscope(SEM)and fluorescence microscope.The resultsshowedthatthePLLA/PLGA/PCLscaffoldhad interconnected macropores and biomimetic nanofibrous structure.In addition,DEX can be released from scaffold in a sustained manner.More importantly,DEX loaded composite scaffold can effectively support the proliferation of BMSCs as indicated by fluorescence observation and cell proliferation assay.The results suggested that the prepared PLLA/PLGA/PCL composite scaffold incorporating drug-loaded PLGA microspheres could hold great potential for bone tissue engineering applications.展开更多
In order to prepare cellulose nanocrystals( CNCs)-coated polylactide( PLA) microspheres for the use of drug delivery and tissue engineering,a Pickering emulsion route was applied. The stable Pickering emulsions were p...In order to prepare cellulose nanocrystals( CNCs)-coated polylactide( PLA) microspheres for the use of drug delivery and tissue engineering,a Pickering emulsion route was applied. The stable Pickering emulsions were prepared using CNCs as efficient stabilizers without any additional surfactant. The microspheres were successfully fabricated after volatilization of the solvent. What's more,the size of microspheres could be controlled by fabrication parameters.展开更多
Poly(D,L-lactic-co-glycolic acid)(PLGA)/poly (lactic acid)(PLA) microspheres/nanoparticles are one of the most successful drug delivery systems (DDS) in lab and clinic. Because of good biocompatibility and biodegradab...Poly(D,L-lactic-co-glycolic acid)(PLGA)/poly (lactic acid)(PLA) microspheres/nanoparticles are one of the most successful drug delivery systems (DDS) in lab and clinic. Because of good biocompatibility and biodegradability, they can be used in various areas, such as longterm release system, vaccine adjuvant, tissue engineering, etc. There have been 15 products available on the US market, but the system still has many problems during development and manufacturing, such as wide size distribution, drug stability issues, and so on. Recently, many new and modified methods have been developed to overcome the above problems. Some of the methods are easy to scale up, and have been available on the market to achieve pilot scale or even industrial production scale. Furthermore, the relevant FDA guidance on the DDS is still incomplete, especially for abbreviated new drug application. In this review, we present some recent achievement of the PLGA/PLA microspheres/nanoparticles, and discuss some promising manufacturing methods. Finally, we focus on the current FDA guidance on the DDS. The review provides an overview on the development of the system in pharmaceutical industry.展开更多
Aim PLA/PLGA was used as biodegradable and biocompatible carriers to achieve sustained release of estradiol (E 2). Methods Microcapsules (MC) were prepared by an emulsification solvent extraction method, and then ...Aim PLA/PLGA was used as biodegradable and biocompatible carriers to achieve sustained release of estradiol (E 2). Methods Microcapsules (MC) were prepared by an emulsification solvent extraction method, and then the properties and in vitro drug release behavior of MC were examined. An analysis of variance (ANOVA) was used to test the statistical significance. Then, multiple comparisons were made with a T method between levels to examine the significance of difference further. For all the results a P value 】0 05 was considered statistically insignificant . Results Under the same conditions, the water adding speed and the particle size had significant effects ( P 【0 01) on the entrapment efficiency of MC; the water adding speed and the concentration of PLA in the oil phase had significant effects ( P 【0 01) on the diameter MC in medium. Release of E 2 from MC was influenced significantly ( P 【0 01) by the water adding speed and the type and molecule weight of the polymers. But the differences between levels of the variates were not all significant. Conclusion E 2 PLA/PLGA MC with various properties can be formed when the formulation and the technology were changed accordingly.展开更多
Objective:To investigate the effects of BCNU/PLGA microspheres on tumor growth,apoptosis and chemotherapy resistance in a C57BL/6 mice orthotopic brain glioma model using GL261 cell line.Methods:BCNU/PLGA sustained-...Objective:To investigate the effects of BCNU/PLGA microspheres on tumor growth,apoptosis and chemotherapy resistance in a C57BL/6 mice orthotopic brain glioma model using GL261 cell line.Methods:BCNU/PLGA sustained-release microspheres were prepared by the water-in-oil-in-water emulsion technique.GL261 cells were intracranially injected into C57BL/6 mouse by using the stereotactic technology.A total of 60 tumor-bearing mice were randomly and equally divided into three groups:untreated control,PLGA treated,BCNU/PLGA treated.Magnetic resonance imaging (MRI) was taken to evaluate tumor volume.BCNU/PLGA sustained-release wafers were implanted in the treatment group two weeks after inoculation.Survival time and quality were observed.Specimens were harvested,and immunohistochemical staining was used to check the expression of Bax,Bcl-2,and O6-methylguanine-DNA methyltransferase (MGMT).Statistical methods was used for analysis of relevant data.Results:BCNU/PLGA sustained-release wafers were fabricated and implanted successfully.There is statistical difference of survival time between the BCNU/PLGA treated group and control groups (P<0.05).MRIscan showed inhibitory effect of BCNU/PLGA on tumor growth.Compared to the group A and B,BCNU/PLGA decreased the expression of apoptosis related gene Bcl-2 (P<0.05),but did not elevate the expression level of Bax (P>0.05),with the ratio of Bax/Bcl-2 increased.For MGMT protein expression,no statistically significant change was found in treated group (P>0.05).Conclusions:Local implantation of BCNU/PLGA microspheres improved the survival quality and time of GL261 glioma-bearing mice significandy,inhibited the tumor proliferation,induced more cell apoptosis,and did not increase the chemotherapy resistance.展开更多
文摘Aim Polylactic acid (PLA) or polylactide-co-glycolide (PLGA) was used asbiodegradable and biocom-patible carriers to achieve sustained release ofestradial-PLGA/PLA-Microspheres (E_2-PLGA/PLA-MS). THF was added in the organic phase to study itseffects on the properties of MS. Methods MS were formed by an emulsification-solvent extractionmethod with mixture of ethyl acetate (EtoAc) and tetrahydrofuran (THF) as the organic solvents, andthen the properties and in vitro drug release behavior were examined. Results The results indicatedthat the drug loading efficiency decreased when THF added, but when the ratio of EtoAc was more than50% , there was no obvious effect of THF ratio, but the particle size increased accordingly. Thecarriers' properties and the drug contents were the main factors influencing the in vitro drugrelease. Conclusions By controlling the technology and formulation, we can get sustained-release E_2biodegradable microsperes with proper particle size, drug content and low burst-release, althoughTHF with readily solubility in water was used in the organic phase.
基金Funded by the national key research and development plan(No.2016YFD0501309)the National Natural Science Foundation of China(31402256)the High-level Talent Research Foundation of Qingdao Agricultural University,China(631206)
文摘We developed poly lactic-co-glycolic acid(PLGA) microspheres loaded with cefquinome and tested their effectiveness in a mouse model. The microspheres were prepared by optimizing several key parameters such as PLGA molecular weight, drug/polymer ratio, internal water volume and ethyl acetate. Drug loading efficiency, stability, in vitro release and tissue distribution in mouse were evaluated. The average particle size of the microspheres was 27.84 μm. The drug loading efficiency was 64.57%. The in vitro release of cefquinome from microspheres after 4 h was about 40% compared with over 90% for the drug alone. The concentration of cefquinome in lung reached 25 μg/g 0.25 h after injection, and kept at 10 μg/g 4 h after injection. However, the concentration of cefquinome was very low in other organs even 0.25 h after injection. In conclusion, Cefquinome-loaded PLGA microspheres are compatible as an effective lung-targeting drug delivery system and have a good sustained release efficacy.
基金Project ( 2001AA218011) supported by the National High Technology Development "863" Program of China
文摘The nanoparticles of polylactide (PLA) and poly(lactide-co-glycolide) (PLGA) were prepared by the bi-nary organic solvent diffusion method. The yield, particle size and size distribution of these nanoparticles wereevaluated. The yield of nanoparticles prepared by this method is over 90%, and the average size of the nanoparticlesis between 130-180 nm. In order to clarify the effect of the organic solvent used in the system on nanoparticle yieldand size, the cloud points of PLA and PLGA were examined by cloud point titration. The results indicate that theyields of nanoparticles increase with the increase of ethanol in the acetone solution and attain the maximum at thecloud point of ethanol, while the size of nanoparticles decreases with the increase of ethanol in the acetone solutionand attains the minimum at the cloud point of ethanol. The optimal composition ratio of binary organic solvents coin-cides to that near the cloud point and the optimal condition of binary organic solvents can be predicted.
文摘The object of the study was to develop a quick and reproducible accelerated in vitro release method to predict and deduce the function of the real time(37 °C) release for long acting PLGA microspheres. The method could be described in several steps. First, the release of the microspheres were studied using the sample and separate method at 37 °C with normal orbital shaking and elevated temperatures with magnetic stirring to further accelerate the release. Second, the most similar profile at elevated temperatures with the real time release was chosen with the help of the n value in the fitted Korsmeyer-Peppas Function. Third,the Weibull function and conversion ratio were used to deduce the function of real time release according to the chosen profile at elevated temperatures. The key point in this study was to provide a quick and precise method to predict the real time release for long acting progesterone PLGA microspheres. So the elevated temperatures coupled with magnetic stirring were used to accelerate the release further, and when there have many similar release profiles with the real time release at elevated temperatures, releasing time at elevated temperatures and the R2 of the final deduced function will be used to help choosing the most similar release profile with the real time release. Four different types of progesterone PLGA microspheres were used to verify the method, and all the deduced function correlated well with the real time releases, for R2 = 0.9912, 0.9781, 0.9918 and 0.9972, respectively.
基金the China Postdoctoral Science Foundation(Grant No.2016M602442)the Science and Technology Plan Projects of Guangdong Province(Grant No.2015B020232010)+1 种基金the 111 project(Grant No.B16047)the Natural Science Fund Project of Guangdong Province(Grant No.2018A030310555,Grant No.2016A030312013)。
文摘This study aimed to prepare poly(D, L-lactic-co-glycolic acid) microspheres(PLGA-Ms)by a modified solid-in-oil-in-water(S/O/W) multi-emulsion technique in order to achieve sustained release with reduced initial burst and maintain efficient drug concentration for a prolonged period of time. Composite PLGA microspheres containing exenatideencapsulated lecithin nanoparticles(Ex-NPs-PLGA-Ms) were obtained by initial fabrication of exenatide-loaded lecithin nanoparticles(Ex-NPs) via the alcohol injection method,followed by encapsulation of Ex-NPs into PLGA microspheres. Compared to Ms prepared by the conventional water-in-oil-in-water(W/O/W) technique(Ex-PLGA-Ms), Ex-NPs-PLGAMs showed a more uniform particle size distribution, reduced initial burst release, and sustained release for over 60 d in vitro. Cytotoxicity studies showed that Ms prepared by both techniques had superior biocompatibility without causing any detectable cytotoxicity.In pharmacokinetic studies, the effective drug concentration was maintained for over 30 d following a single subcutaneous injection of two types of Ms formulation in rats, potentially prolonging the therapeutic action of Ex. In addition, administration of Ex-NPs-PLGA-Ms resulted in a more smooth plasma concentration-time profile with a higher area under the curve(AUC) compared to that of Ex-PLGA-Ms. Overall, Ex-NPs-PLGA-Ms prepared by the novel S/O/W method could be a promising sustained drug release system with reduced initial burst release and prolonged therapeutic efficacy.
文摘The purpose of this study was to develop a PLGA microspheres-based donepezil(DP)formulation which was expected to sustain release of DP for one week with high encapsulation efficiency(EE).DP derived from donepezil hydrochloride was encapsulated in PLGA microspheres by the O/W emulsion-solvent evaporation method.The optimized formulation which avoided the crushing of microspheres during the preparation process was characterized in terms of particle size,morphology,drug loading and EE,physical state of DP in the matrix and in vitro and in vivo release behavior.DP microspheres were prepared successfully with average diameter of 30m,drug loading of 15.92±0.31%and EE up to 78.79±2.56%.Scanning electron microscope image showed it has integrated spherical shape with no drug crystal and porous on its surface.Differential scanning calorimetry and X-ray diffraction results suggested DP was in amorphous state or molecularly dispersed in microspheres.The Tg of PLGA was increased with the addition of DP.The release profile in vitro was characterized with slow but continuous release that lasted for about one week and fitted well with first-order model,which suggested the diffusion governing release mechanism.After single-dose administration of DP microspheres via subcutaneous injection in rats,the plasma concentration of DP reached peak concentration at 0.50 d,and then declined gradually,but was still detectable at 15 d.A good correlation between in vitro and in vivo data was obtained.The results suggest the potential use of DP microspheres for treatment of Alzheimer’s disease over long periods.
文摘When a protein is encapsulated into poly( DL -lactide-co-glycolide)(PLGA) microspheres by means of the double-emulsion method,the harsh microspheres formation process including ultrasonification,exposure to an organic solvent and a polymer may cause the denaturation of the protein. In this study,we investigated the enzymatic activity change and the effect of the excipients on the stability of recombinant human Cu,Zn-superoxide dismutase(rhCu,Zn-SOD) during the emulsification. The specific activity recovery was found to be concentration dependent and the excipients involved such as PEG 600 and Tween 20,and trehalose were shown to increase the stability of rhCu,Zn-SOD. The protein structural integrity within the microspheres was analyzed by FTIR. The structure of rhCu,Zn-SOD within PLGA microspheres containing trehalose was found to be similar to that of the native solid state,whereas the protein encapsulated during the preparation in the absence of any excipient changed due to the possible hydrophobic interaction with the polymer. The results suggest that a rational stability strategy for protein to be encapsulated into microspheres should aim at different processes.
文摘A new method has been developed to prepare microspheres by blending PLGA and dextran polymers (PLDEX) using solvent evaporation technique. Recombinant hepatitis B vaccine (HBsAg) was incorporated in to the double polymeric system. The objective of this study was to investigate the feasibility of PLDEX polymeric microspheres as an adjuvant for hepatitis B vaccine (HBsAg). The present study demonstrates the immunogenicity profile of HBsAg encapsulated in PLDEX and compared their efficacy with alum adsorbed HBsAg. The single intramuscular injection of HBsAg loaded PLDEX microspheres in Wistar rats resulted satisfactory antibody titers. Based on in vivo findings PLDEX microspheres were able induce satisfactory immune response.
基金National Natural Science Foundations of China(Nos.31271028,31570984)Innovation Program of Shanghai Municipal Education Commission,China(No.13ZZ051)+2 种基金International Cooperation Fund of the Science and Technology Commission of Shanghai Municipality,China(No.15540723400)Open Foundation of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,China(No.LK1416)“111 Project” Biomedical Textile Materials Science and Technology,China(No.B07024)
文摘The combination of micro-carriers and polymer scaffolds as promising bone grafts have attracted considerable interest in recent decades.The poly(L-lactic acid)/poly(lactic-co-glycolic acid)/polycaprolactone(PLLA/PLGA/PCL)composite scaffold with porous structure was fabricated by thermally induced phase separation(TIPS).Dexamethasone(DEX)was incorporated into PLGA microspheres and then loaded on the PLLA/PLGA/PCL scaffoldtopreparethedesiredcompositescaffold.The physicochemical properties of the prepared composite scaffold were characterized.The morphology of rat bone marrow mesenchymal stem cells(BMSCs)grown on scaffolds was observed using scanning electron microscope(SEM)and fluorescence microscope.The resultsshowedthatthePLLA/PLGA/PCLscaffoldhad interconnected macropores and biomimetic nanofibrous structure.In addition,DEX can be released from scaffold in a sustained manner.More importantly,DEX loaded composite scaffold can effectively support the proliferation of BMSCs as indicated by fluorescence observation and cell proliferation assay.The results suggested that the prepared PLLA/PLGA/PCL composite scaffold incorporating drug-loaded PLGA microspheres could hold great potential for bone tissue engineering applications.
基金National Key Technology R&D Program of China(No.2014BAC13B02)National Natural Science Foundation of China(No.51403035)+1 种基金Programme of Introducing Talents of Discipline to Universities,China(No.105-07-005735)the Fundamental Research Funds for the Central Universities,China(No.15D110510)
文摘In order to prepare cellulose nanocrystals( CNCs)-coated polylactide( PLA) microspheres for the use of drug delivery and tissue engineering,a Pickering emulsion route was applied. The stable Pickering emulsions were prepared using CNCs as efficient stabilizers without any additional surfactant. The microspheres were successfully fabricated after volatilization of the solvent. What's more,the size of microspheres could be controlled by fabrication parameters.
基金the National Natural Science Foundation of China (Grant Nos. 21336010, 21776287 and 21576268) for the financial supportMr. Jianping Tan (Staidson (Beijing) Biopharmaceuticals Co., Ltd) for information support.
文摘Poly(D,L-lactic-co-glycolic acid)(PLGA)/poly (lactic acid)(PLA) microspheres/nanoparticles are one of the most successful drug delivery systems (DDS) in lab and clinic. Because of good biocompatibility and biodegradability, they can be used in various areas, such as longterm release system, vaccine adjuvant, tissue engineering, etc. There have been 15 products available on the US market, but the system still has many problems during development and manufacturing, such as wide size distribution, drug stability issues, and so on. Recently, many new and modified methods have been developed to overcome the above problems. Some of the methods are easy to scale up, and have been available on the market to achieve pilot scale or even industrial production scale. Furthermore, the relevant FDA guidance on the DDS is still incomplete, especially for abbreviated new drug application. In this review, we present some recent achievement of the PLGA/PLA microspheres/nanoparticles, and discuss some promising manufacturing methods. Finally, we focus on the current FDA guidance on the DDS. The review provides an overview on the development of the system in pharmaceutical industry.
文摘Aim PLA/PLGA was used as biodegradable and biocompatible carriers to achieve sustained release of estradiol (E 2). Methods Microcapsules (MC) were prepared by an emulsification solvent extraction method, and then the properties and in vitro drug release behavior of MC were examined. An analysis of variance (ANOVA) was used to test the statistical significance. Then, multiple comparisons were made with a T method between levels to examine the significance of difference further. For all the results a P value 】0 05 was considered statistically insignificant . Results Under the same conditions, the water adding speed and the particle size had significant effects ( P 【0 01) on the entrapment efficiency of MC; the water adding speed and the concentration of PLA in the oil phase had significant effects ( P 【0 01) on the diameter MC in medium. Release of E 2 from MC was influenced significantly ( P 【0 01) by the water adding speed and the type and molecule weight of the polymers. But the differences between levels of the variates were not all significant. Conclusion E 2 PLA/PLGA MC with various properties can be formed when the formulation and the technology were changed accordingly.
基金supported by grants(2010CB945500,2012CB966300,2009CB941100,81271003) from National Nature Science Foundation,Ministry of Science and Technology of China
文摘Objective:To investigate the effects of BCNU/PLGA microspheres on tumor growth,apoptosis and chemotherapy resistance in a C57BL/6 mice orthotopic brain glioma model using GL261 cell line.Methods:BCNU/PLGA sustained-release microspheres were prepared by the water-in-oil-in-water emulsion technique.GL261 cells were intracranially injected into C57BL/6 mouse by using the stereotactic technology.A total of 60 tumor-bearing mice were randomly and equally divided into three groups:untreated control,PLGA treated,BCNU/PLGA treated.Magnetic resonance imaging (MRI) was taken to evaluate tumor volume.BCNU/PLGA sustained-release wafers were implanted in the treatment group two weeks after inoculation.Survival time and quality were observed.Specimens were harvested,and immunohistochemical staining was used to check the expression of Bax,Bcl-2,and O6-methylguanine-DNA methyltransferase (MGMT).Statistical methods was used for analysis of relevant data.Results:BCNU/PLGA sustained-release wafers were fabricated and implanted successfully.There is statistical difference of survival time between the BCNU/PLGA treated group and control groups (P<0.05).MRIscan showed inhibitory effect of BCNU/PLGA on tumor growth.Compared to the group A and B,BCNU/PLGA decreased the expression of apoptosis related gene Bcl-2 (P<0.05),but did not elevate the expression level of Bax (P>0.05),with the ratio of Bax/Bcl-2 increased.For MGMT protein expression,no statistically significant change was found in treated group (P>0.05).Conclusions:Local implantation of BCNU/PLGA microspheres improved the survival quality and time of GL261 glioma-bearing mice significandy,inhibited the tumor proliferation,induced more cell apoptosis,and did not increase the chemotherapy resistance.