PLA composites containing biomass fillers from the three herbaceous plants such as reed,wheat stalk,and coco-nut fiber with length and diameter at the scale of several millimeters were prepared without using additives...PLA composites containing biomass fillers from the three herbaceous plants such as reed,wheat stalk,and coco-nut fiber with length and diameter at the scale of several millimeters were prepared without using additives.The reinforcement effect on the properties of PLA/biomass filler composites is investigated.The research results show that the PLA/biomass filler composites exhibit good stiffness,flexural strength,and impact toughness.Among the three kinds of biomass fillers,reed reinforced PLA composites show optimal mechanical properties.When filled with 40%–50%reed,the flexural moduli of the composites are over 7000 MPa.Flexural strength retains at the same level of pure PLA.The notch impact strength reaches to 4.50±0.73 kJ/m^(2),which is 2.06 times higher than that of pure PLA.Furthermore,the introduction of biomass fillers increases the crystallization ability of PLA and does not increase the water absorption of the composites.This research demonstrated that PLA composites prepared with biomass fillers from the herbaceous plants(namely herb plastic composites,HPCs)is a material with good comprehensive mechanical properties while retaining the intrinsic particularity of biological sources.展开更多
To clarify the effects of lignin as a biodegradable filler added into the PLA matrix,PLA/lignin composites with or without silane coupling agent ofγ-(2,3-epoxypropoxy)propy trimethoxysilane(KH560)were prepared by a o...To clarify the effects of lignin as a biodegradable filler added into the PLA matrix,PLA/lignin composites with or without silane coupling agent ofγ-(2,3-epoxypropoxy)propy trimethoxysilane(KH560)were prepared by a one-step solvent-free modification method.The effects of KH560 as a compatibilizer on the morphology,chemical structure,crystallization behavior,thermal degradative behavior as well as mechanical strength of the PLA/lignin composites were analyzed in detail.It was found that,after modification by KH560,the fractured surfaces of composites became smooth,suggested sufficient bonding between the lignin and PLA in the composites with KH560 coupling agent molecules.This result further proved by 1H NMR and ATR spectra of the composites that lignin and PLA formed stable chemical bonds with KH560.Due to the toughening effect of KH560,mainly affect the molecular chain mobility,the thermodynamic properties of LG-KH560/PLA composites were all reduced.When compared to the conventional solution modification method of adding silane coupling agents into PLA/lignin,the composites were synthesized via a single-step reactive extrusion modification procedure in this work showed relatively low tensile strength,which mainly because the existence of the free radicals due to coupling agents result in the composite’s deterioration and subsequent weakening of the tensile properties.展开更多
Due to the increasing demand for modified polylactide(PLA)meeting“double green”criteria,the research on sustainable plasticizers for PLA has attracted broad attentions.This study reported an open-ring polymerization...Due to the increasing demand for modified polylactide(PLA)meeting“double green”criteria,the research on sustainable plasticizers for PLA has attracted broad attentions.This study reported an open-ring polymerization method to fabricate cellulose(MCC)-g-PCL(poly(ε-caprolactone))copolymers with a fully sustainable and biodegradable component.MCC-g-PCL copolymers were synthesized,characterized,and used as green plasticizers for the PLA toughening.The results indicated that the MCC-g-PCL derivatives play an important role in the compatibility,crystallization,and toughening of the PLA/MCC-g-PCL composites.The mechanical properties of the fully bio-based PLA/MCC-g-PCL composites were optimized by adding 15 wt%MCC-g-PCL,that is,the elongation at break was 22.6%(~376%higher than that of neat PLA),the tensile strength was 47.3 MPa(comparable to that of neat PLA),and the impact strength was 26 J/m(~130%higher than that of neat PLA).DSC results indicated that MCC-g-PCL reduced the Tg of the PLA blend.When the addition amount was 15 wt%,the Tg of the blend was 58.4°C.Compared with MCC,MCC-g-PCL polyester plasticizer has better thermal stability,T5%(°C)can still be maintained above 300°C.The rheological results showed that MCC-g-PCL acted as a plasticizer,the introduction of PCL flexible chain increased the mobility of PLA molecular chain,and decreased the complex viscosity,storage modulus and loss modulus of PLA blends.The MCC-g-PCL derivatives,as a new green plastic additive,have shown an interesting prospect to prepare fully bio-based composites.展开更多
Nonporous and porous C/PLA/nano-HA composites were fabricated by the process of solvent blending and freeze-drying technique, and the effect of porous structure on the mechanical properties of C/PLA/nano-HA composites...Nonporous and porous C/PLA/nano-HA composites were fabricated by the process of solvent blending and freeze-drying technique, and the effect of porous structure on the mechanical properties of C/PLA/nano-HA composites scaffold was investigated and analyzed. The results show that the effects of porous structure on the bending strength, modulus and curves of stress and strain were obvious. Compared with nonporous sample, the curves of stress and strain of porous sample show more rough, and alternative phenomenon of stress increase and stress relaxation appears. It is strongly suggested that the fracture model of C/PLA/nano-HA composites scaffold transforms from the local to global load due to the porous structure.展开更多
This paper describes the flexural properties of biodegradable composites made using natural fiber and biodegradable plastics. Biodegradable composites were fabricated from bamboo fiber bundles and PLA (polylactic acid...This paper describes the flexural properties of biodegradable composites made using natural fiber and biodegradable plastics. Biodegradable composites were fabricated from bamboo fiber bundles and PLA (polylactic acid) resin. In this research, effect of molding temperature and fiber content on flexural properties of bamboo fiber reinforced composites was investigated. The flexural strength of this composite increased with increasing fiber content up to 70%. The flexural strength of composites decreased at molding temperature of 180°C. Biodegradable composites possessed extremely high flexural strength of 273 MPa, in the case of molding temperature of 160°C and fiber content of 70%.展开更多
Toddy palm fruit have an apparent density below 0.8 g/cm³and offer an interesting lightweight construction potential in polylactide(PLA)composites reinforced with 37 mass-%fibres.Single fibre bundles show similar...Toddy palm fruit have an apparent density below 0.8 g/cm³and offer an interesting lightweight construction potential in polylactide(PLA)composites reinforced with 37 mass-%fibres.Single fibre bundles show similar mechanical properties compared with coir:tensile strength of 240 MPa,Young´s modulus of 3.8 GPa and an elongation at break of 31%.However,density and diameter(~50μm)of fruit fibre bundles are significantly lower.The compression moulded composites have a density of 0.9 g/cm³and achieved an unnotched Charpy impact strength of 12 kJ/m^(2),a tensile strength of 25 MPa,Young’s modulus of 1.9 GPa and an elongation at break of 9%.Due to the high porosity of the composites and the different stress-strain behaviour of fibre and matrix the fibre-reinforcement potential could not be fully used.Maximum stress of the composite was reached at the elongation at break of the PLA-matrix(~2%)while the fibre achieved its maximum stress at an elongation of~31%.After reaching the maximum stress of the composite,the fibres were pulled out from the matrix with low energy absorption,resulting in a decrease in stress and a limited reinforcement potential.Additionally,the study investigates whether an insect attack by the Asian fruit fly on the mesocarp has a significant influence on the mechanical fibre characteristics.The results have shown that only the rough surface of the fibre bundles is smoothed by insect infestation.The mechanical properties were not significantly affected.For this reason insect-infested fruits of the toddy palm,which are no longer suitable for food production,can be used for the production of sustainable composite materials.展开更多
Spherical carbon particles were prepared by using waste Guilin rice noodles as raw materials.By blending the rice noodles based carbon(RC)powders with polylactic acid(PLA),A series of black RC/PLA 3D printing composit...Spherical carbon particles were prepared by using waste Guilin rice noodles as raw materials.By blending the rice noodles based carbon(RC)powders with polylactic acid(PLA),A series of black RC/PLA 3D printing composites were synthesized and characterized.The mechanical testing result shows that the RC/PLA 3D printing composites display better mechanical properties than that of pure PLA.Moreover,the composite with carbon treated with high temperature carbonization has better impact strength.展开更多
With the increasing awareness of environmental protection and rational utilization of resources,natural fiber reinforced composites have shown broad development prospects.Apocynum fiber,known as the“king of wild fibe...With the increasing awareness of environmental protection and rational utilization of resources,natural fiber reinforced composites have shown broad development prospects.Apocynum fiber,known as the“king of wild fiber”,not only has moisture absorption,air permeability,and good mechanical properties but also has many health-related advantages such as antibacterial properties.In this study,four types of needle-punched Apocynum fiber and ramie fiber mat reinforced polylactic acid(PLA)composites were fabricated.Mechanical and thermal properties of the composites were tested and analyzed.The results showed that compared with those of the ramie fiber finish needle-punched mat reinforced composites,the tensile strength and the tensile modulus of Apocynum fiber finish needle-punched mat reinforced composites had increased by 15.3%and 60.1%,respectively.In comparison,the bending strength and the bending modulus were decreased by 21.8%and 7.6%,respectively.Moreover,compared with the Apocynum fiber finish needled-punched mat reinforced composites and the ramie fiber finish needle-punched mat reinforced composites,the Apocynum 50/ramie 50 finish needle-punched mat reinforced composites had the best tensile and bending properties.The after-fracture morphology was detected by a scanning electron microscope(SEM).The thermal properties of the composites were also characterized.It was found that the thermal properties of the four types of composites showed very similar behaviors.展开更多
In order to improve the thermal properties of polylactic acid(PLA) filament,nano-SiO_2 was applied to mix with PLA,then they were spun as composite filament by melt-spinning.The dispersion of nano SiO_2 and the frac...In order to improve the thermal properties of polylactic acid(PLA) filament,nano-SiO_2 was applied to mix with PLA,then they were spun as composite filament by melt-spinning.The dispersion of nano SiO_2 and the fracture surfaces of filaments were studied by scanning electron microscopy(SEM).The properties of composite filament,such as orientation degree,mechanical properties,and surface friction properties,were analyzed.The thermal performances of composite filament were analyzed by differential scanning calorimetry(DSC) and thermo gravimetric analysis(TGA).The results showed that the nano-SiO_2 modified by 5% KH-550 could disperse evenly and loosely in nano-scale,and 1 wt% and 3 wt% nano-SiO_2 dispersed throughout PLA evenly.As the quantity of nano-SiO_2 increased,the properties of composite filament,such as orientation degree,friction coefficient,thermal decomposition temperature,and glass transition temperature,increased more or less.The breaking tenacity increased when 1 wt% SiO_2 was added in PLA,but declined when 3 wt% SiO_2 was added.展开更多
In order to improve the thermal properties of polylactic acid( PLA) master batch,the nano-SiO2 was applied to mixing with PLA. The structure and thermal properties of the composite master batches were studied. The res...In order to improve the thermal properties of polylactic acid( PLA) master batch,the nano-SiO2 was applied to mixing with PLA. The structure and thermal properties of the composite master batches were studied. The results showed that the nano-SiO2 modified by 3% coupling agent KH-570 could be dispersed evenly in PLA in small scale. The thermal decomposition temperature of composite master batches increased by 6. 20-10. 80 ℃, the glass transition temperature increased by 0. 22-5. 16 ℃,and the heat enthalpy at the glass transition temperature increased by 0. 574-2. 437 J /g,compared with pure PLA. The composite master batch possessed superior thermal stability and heat resistance.展开更多
A new entire biodegradable scaffold has been developed which does not require precellularization before transplantation.This new kind of vascular scaffold prototype made from porous poly-ε-caprolactone( PCL) membrane...A new entire biodegradable scaffold has been developed which does not require precellularization before transplantation.This new kind of vascular scaffold prototype made from porous poly-ε-caprolactone( PCL) membrane to provide three-dimensional environment for cell growth, and embedded with weft-knitted polylactic acid( PLA) fabric to support mechanics.The aim of this paper is to study the variation tendency of mechanical properties with the fabric spacing changing.The basic geometrical parameters were measured to characterize properties of the samples.The tensile and compressive elastic recovery of the samples were tested by the universal mechanical tester and radial compression apparatus,respectively.Both tensile and compressive properties enhanced when reducing the fabric spacing of the composite vascular scaffold.展开更多
基金supported by“One Belt,One Road”Projects of China Academy of Sciences(174433KYSB20190082)Science and Technology Service Network Plan of China Academy of Sciences(KFJ-STS-QYZD-2021-16-002)+2 种基金Key Projects of Ningbo Public Welfare Science and Technology Plan(2021S020)Ningbo Natural Science Foundation(2021J196)Youth Innovation Promotion Association CAS(2017339).
文摘PLA composites containing biomass fillers from the three herbaceous plants such as reed,wheat stalk,and coco-nut fiber with length and diameter at the scale of several millimeters were prepared without using additives.The reinforcement effect on the properties of PLA/biomass filler composites is investigated.The research results show that the PLA/biomass filler composites exhibit good stiffness,flexural strength,and impact toughness.Among the three kinds of biomass fillers,reed reinforced PLA composites show optimal mechanical properties.When filled with 40%–50%reed,the flexural moduli of the composites are over 7000 MPa.Flexural strength retains at the same level of pure PLA.The notch impact strength reaches to 4.50±0.73 kJ/m^(2),which is 2.06 times higher than that of pure PLA.Furthermore,the introduction of biomass fillers increases the crystallization ability of PLA and does not increase the water absorption of the composites.This research demonstrated that PLA composites prepared with biomass fillers from the herbaceous plants(namely herb plastic composites,HPCs)is a material with good comprehensive mechanical properties while retaining the intrinsic particularity of biological sources.
基金supported by the National Natural Science Foundation of China (52373091,52173084,51973192,51603122)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2021SZ-FR002)。
基金funded by the National Key Research and Development Program of China(grant number:2019YFD1101201)the National Natural Science Foundation of China(grant numbers:51773005 and 21905008)the Beijing Natural Science Foundation(grant number:2194071).
文摘To clarify the effects of lignin as a biodegradable filler added into the PLA matrix,PLA/lignin composites with or without silane coupling agent ofγ-(2,3-epoxypropoxy)propy trimethoxysilane(KH560)were prepared by a one-step solvent-free modification method.The effects of KH560 as a compatibilizer on the morphology,chemical structure,crystallization behavior,thermal degradative behavior as well as mechanical strength of the PLA/lignin composites were analyzed in detail.It was found that,after modification by KH560,the fractured surfaces of composites became smooth,suggested sufficient bonding between the lignin and PLA in the composites with KH560 coupling agent molecules.This result further proved by 1H NMR and ATR spectra of the composites that lignin and PLA formed stable chemical bonds with KH560.Due to the toughening effect of KH560,mainly affect the molecular chain mobility,the thermodynamic properties of LG-KH560/PLA composites were all reduced.When compared to the conventional solution modification method of adding silane coupling agents into PLA/lignin,the composites were synthesized via a single-step reactive extrusion modification procedure in this work showed relatively low tensile strength,which mainly because the existence of the free radicals due to coupling agents result in the composite’s deterioration and subsequent weakening of the tensile properties.
基金supported by the National Natural Science Foundation of China(21574030,52063007,51863004)Guizhou Province High-Level Innovative Talents Fund([2020]6024)+1 种基金Guizhou Provincial Science and Technology Projects(Grant No.[2022]024)and the Science and Technology Project of Baiyun District,Guiyang City(Grant No.[2020]26)the authors gratefully acknowledge the financial support from the National Engineering Research Center for Compounding and Modification of Polymeric Materials(Guizhou Material Industrial Technology Institute).
文摘Due to the increasing demand for modified polylactide(PLA)meeting“double green”criteria,the research on sustainable plasticizers for PLA has attracted broad attentions.This study reported an open-ring polymerization method to fabricate cellulose(MCC)-g-PCL(poly(ε-caprolactone))copolymers with a fully sustainable and biodegradable component.MCC-g-PCL copolymers were synthesized,characterized,and used as green plasticizers for the PLA toughening.The results indicated that the MCC-g-PCL derivatives play an important role in the compatibility,crystallization,and toughening of the PLA/MCC-g-PCL composites.The mechanical properties of the fully bio-based PLA/MCC-g-PCL composites were optimized by adding 15 wt%MCC-g-PCL,that is,the elongation at break was 22.6%(~376%higher than that of neat PLA),the tensile strength was 47.3 MPa(comparable to that of neat PLA),and the impact strength was 26 J/m(~130%higher than that of neat PLA).DSC results indicated that MCC-g-PCL reduced the Tg of the PLA blend.When the addition amount was 15 wt%,the Tg of the blend was 58.4°C.Compared with MCC,MCC-g-PCL polyester plasticizer has better thermal stability,T5%(°C)can still be maintained above 300°C.The rheological results showed that MCC-g-PCL acted as a plasticizer,the introduction of PCL flexible chain increased the mobility of PLA molecular chain,and decreased the complex viscosity,storage modulus and loss modulus of PLA blends.The MCC-g-PCL derivatives,as a new green plastic additive,have shown an interesting prospect to prepare fully bio-based composites.
基金Project(30870609) supported by the National Natural Science Foundation of ChinaProjects(KJ081205 KJ091213) supported by the Natural Science Foundation of Chongqing Education Committee, China
文摘Nonporous and porous C/PLA/nano-HA composites were fabricated by the process of solvent blending and freeze-drying technique, and the effect of porous structure on the mechanical properties of C/PLA/nano-HA composites scaffold was investigated and analyzed. The results show that the effects of porous structure on the bending strength, modulus and curves of stress and strain were obvious. Compared with nonporous sample, the curves of stress and strain of porous sample show more rough, and alternative phenomenon of stress increase and stress relaxation appears. It is strongly suggested that the fracture model of C/PLA/nano-HA composites scaffold transforms from the local to global load due to the porous structure.
文摘This paper describes the flexural properties of biodegradable composites made using natural fiber and biodegradable plastics. Biodegradable composites were fabricated from bamboo fiber bundles and PLA (polylactic acid) resin. In this research, effect of molding temperature and fiber content on flexural properties of bamboo fiber reinforced composites was investigated. The flexural strength of this composite increased with increasing fiber content up to 70%. The flexural strength of composites decreased at molding temperature of 180°C. Biodegradable composites possessed extremely high flexural strength of 273 MPa, in the case of molding temperature of 160°C and fiber content of 70%.
基金funded within the framework of the BMBF exchange project“Thai-German Agro-based Fibre Exchange Programme-Sustainable Development:From Plant to Product(Acronym:AgroFibre)”under the registration number 01DP15016.
文摘Toddy palm fruit have an apparent density below 0.8 g/cm³and offer an interesting lightweight construction potential in polylactide(PLA)composites reinforced with 37 mass-%fibres.Single fibre bundles show similar mechanical properties compared with coir:tensile strength of 240 MPa,Young´s modulus of 3.8 GPa and an elongation at break of 31%.However,density and diameter(~50μm)of fruit fibre bundles are significantly lower.The compression moulded composites have a density of 0.9 g/cm³and achieved an unnotched Charpy impact strength of 12 kJ/m^(2),a tensile strength of 25 MPa,Young’s modulus of 1.9 GPa and an elongation at break of 9%.Due to the high porosity of the composites and the different stress-strain behaviour of fibre and matrix the fibre-reinforcement potential could not be fully used.Maximum stress of the composite was reached at the elongation at break of the PLA-matrix(~2%)while the fibre achieved its maximum stress at an elongation of~31%.After reaching the maximum stress of the composite,the fibres were pulled out from the matrix with low energy absorption,resulting in a decrease in stress and a limited reinforcement potential.Additionally,the study investigates whether an insect attack by the Asian fruit fly on the mesocarp has a significant influence on the mechanical fibre characteristics.The results have shown that only the rough surface of the fibre bundles is smoothed by insect infestation.The mechanical properties were not significantly affected.For this reason insect-infested fruits of the toddy palm,which are no longer suitable for food production,can be used for the production of sustainable composite materials.
基金supported by grants of the National Nature Science Foundation of China(No.51763007)National Undergraduate Innovation and Entrepreneurship Training Program(No.201910596205).
文摘Spherical carbon particles were prepared by using waste Guilin rice noodles as raw materials.By blending the rice noodles based carbon(RC)powders with polylactic acid(PLA),A series of black RC/PLA 3D printing composites were synthesized and characterized.The mechanical testing result shows that the RC/PLA 3D printing composites display better mechanical properties than that of pure PLA.Moreover,the composite with carbon treated with high temperature carbonization has better impact strength.
基金National Natural Science Foundation of China(No.50803010)Natural Science Foundation of Shanghai,China(No.14ZR1400100)。
文摘With the increasing awareness of environmental protection and rational utilization of resources,natural fiber reinforced composites have shown broad development prospects.Apocynum fiber,known as the“king of wild fiber”,not only has moisture absorption,air permeability,and good mechanical properties but also has many health-related advantages such as antibacterial properties.In this study,four types of needle-punched Apocynum fiber and ramie fiber mat reinforced polylactic acid(PLA)composites were fabricated.Mechanical and thermal properties of the composites were tested and analyzed.The results showed that compared with those of the ramie fiber finish needle-punched mat reinforced composites,the tensile strength and the tensile modulus of Apocynum fiber finish needle-punched mat reinforced composites had increased by 15.3%and 60.1%,respectively.In comparison,the bending strength and the bending modulus were decreased by 21.8%and 7.6%,respectively.Moreover,compared with the Apocynum fiber finish needled-punched mat reinforced composites and the ramie fiber finish needle-punched mat reinforced composites,the Apocynum 50/ramie 50 finish needle-punched mat reinforced composites had the best tensile and bending properties.The after-fracture morphology was detected by a scanning electron microscope(SEM).The thermal properties of the composites were also characterized.It was found that the thermal properties of the four types of composites showed very similar behaviors.
基金Funded by the Shanxi Province Science Foundation for Youths of China[Nos.2014021020-2 and 2015021076]the Shanxi Province Higher School Science and Technology Innovation Project[No.2015125]+2 种基金the Project of Taiyuan University of Technology[Nos.2013T0202013T0212013T022]
文摘In order to improve the thermal properties of polylactic acid(PLA) filament,nano-SiO_2 was applied to mix with PLA,then they were spun as composite filament by melt-spinning.The dispersion of nano SiO_2 and the fracture surfaces of filaments were studied by scanning electron microscopy(SEM).The properties of composite filament,such as orientation degree,mechanical properties,and surface friction properties,were analyzed.The thermal performances of composite filament were analyzed by differential scanning calorimetry(DSC) and thermo gravimetric analysis(TGA).The results showed that the nano-SiO_2 modified by 5% KH-550 could disperse evenly and loosely in nano-scale,and 1 wt% and 3 wt% nano-SiO_2 dispersed throughout PLA evenly.As the quantity of nano-SiO_2 increased,the properties of composite filament,such as orientation degree,friction coefficient,thermal decomposition temperature,and glass transition temperature,increased more or less.The breaking tenacity increased when 1 wt% SiO_2 was added in PLA,but declined when 3 wt% SiO_2 was added.
基金Shanxi Province Science Foundation for Youths,China(No.2014021020-2)the Projects of Taiyuan University of Technology,China(Nos.2012L074,2013T020,2013T021,and 2013T022)Shanxi Province College Students Training Program,China(No.2013067)
文摘In order to improve the thermal properties of polylactic acid( PLA) master batch,the nano-SiO2 was applied to mixing with PLA. The structure and thermal properties of the composite master batches were studied. The results showed that the nano-SiO2 modified by 3% coupling agent KH-570 could be dispersed evenly in PLA in small scale. The thermal decomposition temperature of composite master batches increased by 6. 20-10. 80 ℃, the glass transition temperature increased by 0. 22-5. 16 ℃,and the heat enthalpy at the glass transition temperature increased by 0. 574-2. 437 J /g,compared with pure PLA. The composite master batch possessed superior thermal stability and heat resistance.
基金the Fundamental Research Funds for the Central Universities,China,National Natural Science Foundation of China,"111 Project" Biomedical Textile Materials Science and Technology,China,the Donghua University Innovation Fund of Graduate Project,China
文摘A new entire biodegradable scaffold has been developed which does not require precellularization before transplantation.This new kind of vascular scaffold prototype made from porous poly-ε-caprolactone( PCL) membrane to provide three-dimensional environment for cell growth, and embedded with weft-knitted polylactic acid( PLA) fabric to support mechanics.The aim of this paper is to study the variation tendency of mechanical properties with the fabric spacing changing.The basic geometrical parameters were measured to characterize properties of the samples.The tensile and compressive elastic recovery of the samples were tested by the universal mechanical tester and radial compression apparatus,respectively.Both tensile and compressive properties enhanced when reducing the fabric spacing of the composite vascular scaffold.