[Objective] The antifungal bacteria of plant wilt disease was screened and identified to provide foundation for the study on bio-control preparation of plant wilt disease.[Method] Confrontation culture method was adop...[Objective] The antifungal bacteria of plant wilt disease was screened and identified to provide foundation for the study on bio-control preparation of plant wilt disease.[Method] Confrontation culture method was adopted to screen the bio-control bacteria with good antifungal effect against plant wilt disease,Biolog bacteria automatic identification system and 16S rDNA sequence analysis method were selected to identify its taxonomic status,the biological safety of the strain towards cotton and mice was also determined.[Result] 12 bacterial strains were isolated from rhizosphere of cotton.Among those strains,5 isolates showed antifungal activity against F.decemcellulare Brick,F.oxysporum f.sp.Diathi,F.oxysporum f.sp.vasinfectum.The antifungal effect of KL-1 strain against three target strains of pathogen reached 69.09%,80.78% and 78.89% respectively.Identification results of Biolog bacteria automatic identification system and 16S rDNA sequence analysis method showed that KL-1strain was Bacillus amyloliquefaciens;primary determination results of biological safety also showed that the strain KL-1 was safe and non-toxic towards cotton and mice.[Conclusion] KL-1strain of B.amyloliquefaciens had antifungal effect against several pathogens of plant wilt diseases,which was safe and non-toxic towards cotton and mice,being the bio-control strain with research and development potential.展开更多
Plant wilt bacteria (P. solanacearum)have a wide host range and cause wilt diseases of more than 200 species from 33 families. Because of no suitable resistant materials to wilt diseases, Fan Yun-liu et al. first prop...Plant wilt bacteria (P. solanacearum)have a wide host range and cause wilt diseases of more than 200 species from 33 families. Because of no suitable resistant materials to wilt diseases, Fan Yun-liu et al. first proposed that this disease would be controlled with the genetic engineering of bacteriocin. Since bacteriocin M2 from strain M2 of P.展开更多
基金Supported by Natural Science Research Project in Universities in Jiangsu Province(10KJD210004)"Blue Project" Excellent Young Teacher Training Project in Universities in Jiangsu Province~~
文摘[Objective] The antifungal bacteria of plant wilt disease was screened and identified to provide foundation for the study on bio-control preparation of plant wilt disease.[Method] Confrontation culture method was adopted to screen the bio-control bacteria with good antifungal effect against plant wilt disease,Biolog bacteria automatic identification system and 16S rDNA sequence analysis method were selected to identify its taxonomic status,the biological safety of the strain towards cotton and mice was also determined.[Result] 12 bacterial strains were isolated from rhizosphere of cotton.Among those strains,5 isolates showed antifungal activity against F.decemcellulare Brick,F.oxysporum f.sp.Diathi,F.oxysporum f.sp.vasinfectum.The antifungal effect of KL-1 strain against three target strains of pathogen reached 69.09%,80.78% and 78.89% respectively.Identification results of Biolog bacteria automatic identification system and 16S rDNA sequence analysis method showed that KL-1strain was Bacillus amyloliquefaciens;primary determination results of biological safety also showed that the strain KL-1 was safe and non-toxic towards cotton and mice.[Conclusion] KL-1strain of B.amyloliquefaciens had antifungal effect against several pathogens of plant wilt diseases,which was safe and non-toxic towards cotton and mice,being the bio-control strain with research and development potential.
文摘Plant wilt bacteria (P. solanacearum)have a wide host range and cause wilt diseases of more than 200 species from 33 families. Because of no suitable resistant materials to wilt diseases, Fan Yun-liu et al. first proposed that this disease would be controlled with the genetic engineering of bacteriocin. Since bacteriocin M2 from strain M2 of P.