Eleven new imine derivatives 6 containing 1H-1,2,4-triazole and thiazole rings were synthesized by the condensation of 5-((1H- 1,2,4-triazol-1-yl)methyl)-4-tert-butylthiazol-2-amine with various substituted benzaldehy...Eleven new imine derivatives 6 containing 1H-1,2,4-triazole and thiazole rings were synthesized by the condensation of 5-((1H- 1,2,4-triazol-1-yl)methyl)-4-tert-butylthiazol-2-amine with various substituted benzaldehydes.The structures of the title compounds were characterized by ~1H NMR,MS and elemental analysis.The plant-growth regulatory activities of these compounds were evaluated.The primary bioassay results indicated that these target compounds exhibited promising plant-growth regulatory activities.展开更多
The title compound,(1S,4R)-4,7,7-trimethyl-6-oxabicyclo [3.2.1] octane-1,4-diol(C(10)H(18)O3), has been synthesized from terpinolene via one-step catalytic synthetic method and structurally characterized by me...The title compound,(1S,4R)-4,7,7-trimethyl-6-oxabicyclo [3.2.1] octane-1,4-diol(C(10)H(18)O3), has been synthesized from terpinolene via one-step catalytic synthetic method and structurally characterized by means of HRMS, IR, 1H-NMR, (13)C-NMR and single-crystal X-ray diffraction. The compound crystallizes in trigonal, space group R-3, with a = 27.892(9), b = 27.892(9), c = 6.720(2) A, γ = 120°, Z = 18, V = 4527(3) A3, Dc = 1.230 g/cm3, Mr = 186.24, λ(Mo Kα) = 0.71073?, μ = 0.09 mm(-1), F(000) = 1836, the final R = 0.051 and wR = 0.161. The title compound molecule contained a 6-oxabicyclo[3.2.1]octane skeleton and two hydroxyl groups, which were connected through intermolecular O–H…O hydrogen bonds to generate a two-dimensional network. Especially, the preliminary bioassay showed that the title compound can promote the root growth and shoot elongation of rape(Brassica campestris) at low concentration(0.62570 mmol·L^-1) and inhibit them at high concentration(〉 70 mmol·L^-1).展开更多
The osmium tetroxide catalyzed asymmetric dihydroxylation of the(22E)- steroidal sidechain is described and an unexpected 8:1 ratio of(22R,23R)and (22S,23S)was obtained from the(22E,24S)-24-ethyl substituted sidechain.
For investigation on the characteristics of ethanol metabolism in tissues of different plant species, calluses from eight selected plant species were cultured on medium supplemented with ethanol in tightly sealed cult...For investigation on the characteristics of ethanol metabolism in tissues of different plant species, calluses from eight selected plant species were cultured on medium supplemented with ethanol in tightly sealed culture flasks. Changes of the ethanol level were detected by gas chromatography. During the culture period, the calluses of tobacco, potato and petunia were, able to catabolize exogenous ethanol, resulting in the prominent decline of the ethanol level in the medium. The calluses of melon and peanut were also able to catabolize thanol but with lower efficiency. The other three calluses of carrot, soybean and rice did not catabolize ethanol but instead produced small to large amount of ethanol, resulting in the increase of the ethanol level in the media. It was also found that changing the balance between auxin and cytokinin could influence only the ethanol metabolism efficiency but could not change the metabolism patterns on ethanol of the cultured calluses. It can be concluded that, ethanol metabolism pattern of calluses in cultures is an innate physiological characteristic of the respective plant species.展开更多
The application of biofertilizers is becoming an inevitable trend to substitute chemical fertilizers for sustainable agriculture.To better understand the development of biofertilizers from 1980 to 2022,we used bibliom...The application of biofertilizers is becoming an inevitable trend to substitute chemical fertilizers for sustainable agriculture.To better understand the development of biofertilizers from 1980 to 2022,we used bibliometric mining to analyze 12,880 journal articles related to biofertilizer.The network cooccurrence analysis suggested that the biofertilizers research can be separated into three stages.The first stage(1980-2005)focused on nitrogen fixation.The second stage(2006-2015)concentrated on the mechanisms for increasing plant yield.The third stage(2016-2022)was the application of biofertilizers to improve the soil environment.The keyword analysis revealed the mechanisms of biofertilizers to improve plant-growth:biofertilizers can impact the nutritional status of plants,regulate plant hormones,and improve soil environments and the microbiome.The bacteria use as biofertilizers,included Pseudomonas,Azospirillum,and Bacillus,were also identified through bibliometric mining.These findings provide critical discernment to aid further study of biofertilizers for sustainable agriculture.展开更多
基金the National Natural Science Foundation of China(No.20772068)the National Key Project of Scientific and Technical Supporting Programs of China(No.2006BAE01A01-5) for financial support
文摘Eleven new imine derivatives 6 containing 1H-1,2,4-triazole and thiazole rings were synthesized by the condensation of 5-((1H- 1,2,4-triazol-1-yl)methyl)-4-tert-butylthiazol-2-amine with various substituted benzaldehydes.The structures of the title compounds were characterized by ~1H NMR,MS and elemental analysis.The plant-growth regulatory activities of these compounds were evaluated.The primary bioassay results indicated that these target compounds exhibited promising plant-growth regulatory activities.
基金Supported by the National Natural Science Foundation of China(No.31460174)the Science and Research Start-Up Project for the Recruit Talent of Guangxi University for Nationalities(No.2014MDQD014)Innovation Project of Guangxi Graduate Education(gxun-chxzs2016113)
文摘The title compound,(1S,4R)-4,7,7-trimethyl-6-oxabicyclo [3.2.1] octane-1,4-diol(C(10)H(18)O3), has been synthesized from terpinolene via one-step catalytic synthetic method and structurally characterized by means of HRMS, IR, 1H-NMR, (13)C-NMR and single-crystal X-ray diffraction. The compound crystallizes in trigonal, space group R-3, with a = 27.892(9), b = 27.892(9), c = 6.720(2) A, γ = 120°, Z = 18, V = 4527(3) A3, Dc = 1.230 g/cm3, Mr = 186.24, λ(Mo Kα) = 0.71073?, μ = 0.09 mm(-1), F(000) = 1836, the final R = 0.051 and wR = 0.161. The title compound molecule contained a 6-oxabicyclo[3.2.1]octane skeleton and two hydroxyl groups, which were connected through intermolecular O–H…O hydrogen bonds to generate a two-dimensional network. Especially, the preliminary bioassay showed that the title compound can promote the root growth and shoot elongation of rape(Brassica campestris) at low concentration(0.62570 mmol·L^-1) and inhibit them at high concentration(〉 70 mmol·L^-1).
文摘The osmium tetroxide catalyzed asymmetric dihydroxylation of the(22E)- steroidal sidechain is described and an unexpected 8:1 ratio of(22R,23R)and (22S,23S)was obtained from the(22E,24S)-24-ethyl substituted sidechain.
基金Supported by the Natural Science Foundation of Guangdong Province(No.950406)
文摘For investigation on the characteristics of ethanol metabolism in tissues of different plant species, calluses from eight selected plant species were cultured on medium supplemented with ethanol in tightly sealed culture flasks. Changes of the ethanol level were detected by gas chromatography. During the culture period, the calluses of tobacco, potato and petunia were, able to catabolize exogenous ethanol, resulting in the prominent decline of the ethanol level in the medium. The calluses of melon and peanut were also able to catabolize thanol but with lower efficiency. The other three calluses of carrot, soybean and rice did not catabolize ethanol but instead produced small to large amount of ethanol, resulting in the increase of the ethanol level in the media. It was also found that changing the balance between auxin and cytokinin could influence only the ethanol metabolism efficiency but could not change the metabolism patterns on ethanol of the cultured calluses. It can be concluded that, ethanol metabolism pattern of calluses in cultures is an innate physiological characteristic of the respective plant species.
基金funded by the Key R&D Projects in Zhejiang Province(Grant No.2020C02001)Sannong Jiufang S&T Project in Zhejiang Province(Grant No.2022SNJF024)+3 种基金Key innovation Project of Qilu University of Technology(Shandong Academy of Sciences)(Grant No.2022JBZ01-06)Natural Science Foundation of Shandong Province(Grant No.ZR2021 KE038)Shandong Province Agricultural Major Application Technology Innovation Project(Grant No.20182130106)Foundation of Qilu University of Technology of Cultivating Subject for Biology and Biochemistry(Grant No.202119)
文摘The application of biofertilizers is becoming an inevitable trend to substitute chemical fertilizers for sustainable agriculture.To better understand the development of biofertilizers from 1980 to 2022,we used bibliometric mining to analyze 12,880 journal articles related to biofertilizer.The network cooccurrence analysis suggested that the biofertilizers research can be separated into three stages.The first stage(1980-2005)focused on nitrogen fixation.The second stage(2006-2015)concentrated on the mechanisms for increasing plant yield.The third stage(2016-2022)was the application of biofertilizers to improve the soil environment.The keyword analysis revealed the mechanisms of biofertilizers to improve plant-growth:biofertilizers can impact the nutritional status of plants,regulate plant hormones,and improve soil environments and the microbiome.The bacteria use as biofertilizers,included Pseudomonas,Azospirillum,and Bacillus,were also identified through bibliometric mining.These findings provide critical discernment to aid further study of biofertilizers for sustainable agriculture.