[Objective] The pathogenic Escherichia coli in musk deer was classified at molecular level to provide basic materials for molecular epidemiology of pathogenic Escherichia coli in musk deer. [Method] Plasmids from 24 p...[Objective] The pathogenic Escherichia coli in musk deer was classified at molecular level to provide basic materials for molecular epidemiology of pathogenic Escherichia coli in musk deer. [Method] Plasmids from 24 pathogenic Escherichia coli in musk deer were extracted by the Lysis Triton method, and then identified by single enzyme digestion with three endonucleases of Hind Ⅲ, EcoR Ⅰ and BamH Ⅰ. [Result] The yield rate of plasmids was 91.6%, and 24 pathogenic Escherichia coli in musk deer had the identical or similar plasmid profiles. [Conclusion] Plasmid DNA analysis offers scientific basis for molecular epidemiology of pathogenic Escherichia coli in musk deer in Sichuan Institute of Musk Deer Breeding.展开更多
The activities of the catalytic hydrolysis of phosphate diester (BNPP) [bis(p-nitrophenyl)phosphate diester] and plasmid DNA (pUC 18) by mononuclear macrocyclic polyamine metal complexes have been investigated i...The activities of the catalytic hydrolysis of phosphate diester (BNPP) [bis(p-nitrophenyl)phosphate diester] and plasmid DNA (pUC 18) by mononuclear macrocyclic polyamine metal complexes have been investigated in this paper. The results showed that the highest activity in hydrolysis of BNPP was obtained with le--Zn(II) complex (composed of lipophilic group) as catalyst. The hydrolysis rate enhancement is up to 3.64 × 10^4 fold. These metal complexes could effectively promote the cleavage of plasmid DNA (pUC18) at physiological conditions.展开更多
Plasmid vector is increasingly applied to gene therapy or gene vaccine. The production of plasmid pCMV-AP3 for cancer gene therapy was conducted in a modified MBL medium using a recombinant E. coli BL21 system. The ef...Plasmid vector is increasingly applied to gene therapy or gene vaccine. The production of plasmid pCMV-AP3 for cancer gene therapy was conducted in a modified MBL medium using a recombinant E. coli BL21 system. The effects of different MMBL components on plasmid yield, cell mass and specific plasmid DNA productivity were evaluated on shake-flask scale. The results showed that glucose was the optimal carbon source. High plasmid yield (58.3 mg/L) was obtained when 5.0 g/L glucose was added to MMBL. Glycerol could be chosen as a complementary carbon source because of the highest specific plasmid pro- ductivity (37.9 mg DNA/g DCW). After tests of different levels of nitrogen source and inorganic phosphate, a modified MMBL medium was formulated for optimal plasmid production. Further study showed that the initial acetate addition (less than 4.0 g/L) in MMBL improved plasmid production significantly, although it inhibited cell growth. The results will be useful for large-scale plasmid production using recombinant E. coli system.展开更多
Objective:The development of gene carriers for efficient gene delivery into cells has attracted growing attention in recent years.The aim of this study was to achieve a better outcome of AAV-293 cells transfection by ...Objective:The development of gene carriers for efficient gene delivery into cells has attracted growing attention in recent years.The aim of this study was to achieve a better outcome of AAV-293 cells transfection by plasmid DNA.Methods:We studied the optimal condition for higher efficiency of cationic lipid-mediated cell transfection.Four experimental groups were set.Plasmid DNA and liposome were mixed in each groups at different ratios(μg:μL),1:2.5,1:3.5,1:4.0 and 1:5.0,respectively.LacZ gene functioned as reporter gene,measuring the transfection efficiency of the four groups using the method of X-gal staining.Results:When the ratio was 1:3.5,the cell transfection rate was the highest.While the ratio of 1:2.5 recommended by product manual achieve the lowest transfection rate.Their difference had statistical significance.Conclusion:In order to obtain a higher transfection efficiency,optimization on conditions of the ratio of plasmid DNA to liposome is necessary in cell transfection.展开更多
Polymerase chain reaction (PCR) was used to amplify a 600-base pair (bp) sequence of plasmid pGEX-2T DNA bound on soil colloidal particles from Brown soil (Alfisol) and Red soil (Ultisol), and three different ...Polymerase chain reaction (PCR) was used to amplify a 600-base pair (bp) sequence of plasmid pGEX-2T DNA bound on soil colloidal particles from Brown soil (Alfisol) and Red soil (Ultisol), and three different minerals (goethite, kaolinite, montmorillonite). DNA bound on soil colloids, kaolinite, and montmorillonite was not amplified when the complexes were used directly but amplification occurred when the soil colloid or kaolinite-DNA complex was diluted, 10- and 20-fold. The montmorillonite-DNA complex required at least 100-fold dilution before amplification could be detected. DNA bound on goethite was amplified irrespective of whether the complex was used directly, or diluted 10- and 20-fold. The amplification of mineral-bound plasmid DNA by PCR is, therefore, markedly influenced by the type and concentration of minerals used. This information is of fundamental importance to soil molecular microbial ecology with particular reference to monitoring the fate of genetically engineered microorganisms and their recombinant DNA in soil environments.展开更多
The composites based on the Ti O2 are potentially used in wetland pollution control. In this work, the biological effect of the Ag/Ag Br/Ti O2/Active carbon(AC) composites was studied on the plasmid DNA and Tetrahymen...The composites based on the Ti O2 are potentially used in wetland pollution control. In this work, the biological effect of the Ag/Ag Br/Ti O2/Active carbon(AC) composites was studied on the plasmid DNA and Tetrahymena membrane. The atomic force micrograph(AFM) images showed that, in the presence of the composites under illumination, most p UC18 DNA molecules showed quite different topography and were opened and relaxed circle shapes. After DNA was catalyzed for 40 min, all supercoiled and circular DNA were changed into the linear DNA molecules. The gel electrophoresis experiment confirmed the results and demonstrated the dynamic process of DNA degradation. ATR-FTIR spectra revealed that amide groups and PO2-of the phospho-lipid phospho-diester on Tetrahymena surface were oxidized in the presence of the composites under illumination. An increase in the fluorescence polarization of DPH was observed, reflecting a significant decrease in membrane fluidity of Tetrahymena.展开更多
For systemic injection of cationic liposome/plasmid DNA (pDNA) complexes (cationic lipoplexes), polyethylene glycol (PEG)-modification (PEGylation) of lipoplexes can enhance their systemic stability. In this study, we...For systemic injection of cationic liposome/plasmid DNA (pDNA) complexes (cationic lipoplexes), polyethylene glycol (PEG)-modification (PEGylation) of lipoplexes can enhance their systemic stability. In this study, we examined whether intravenous injection of PEGylated cationic lipoplexes into tumor-bearing mice could deliver pDNA into tumor tissues and induce transgene expression. PEGylation of cationic liposomes could prevent their agglutination with erythrocytes. However, when PEGylated cationic lipoplexes were injected intravenously into tumor-bearing mice, they accumulated in tumor vascular vessels and did not exhibit transgene expression in tumors with both poor and well-developed vascularization. Furthermore, PEGylated cationic lipoplexes of CpG- free pDNA could not increase transgene expression in tumors after intravenous injection. These results suggested that PEGylation could not extravasate cationic lipoplexes from vascular vessels in tumors and abolished transgene expression although it enhanced the systemic stability of cationic lipoplexes by avoiding interactions with blood components such as erythrocytes. Successful delivery of pDNA to tumors by PEGylated cationic liposomes will require a rational strategy and the design of liposomal delivery systems to overcome the issue associated with the use of PEG.展开更多
Broad-host-range plasmids are frequently associated with antibiotic resistance genes and can quickly spread antibiotic resistant phenotypes among diverse bacterial populations. Wastewater treatment plants have been id...Broad-host-range plasmids are frequently associated with antibiotic resistance genes and can quickly spread antibiotic resistant phenotypes among diverse bacterial populations. Wastewater treatment plants have been identified as reservoirs for broad-host-range plasmids carrying resistance genes. The threat of broad-host-range plasmids released into the environment from wastewater treatment plants has identified the need for disinfection protocols to target broad-host- range plasmid destruction. Here we evaluate the efficacy of dissolved ozone at 2 and 8 mg·L–1 as a primary means for the destruction of broad-host-range plasmid and chromosomal DNA in simulated effluent. Pilot-scale tests using an experimental unit were carried out in municipal wastewater treatment plant effluent and compared with ultraviolet (UV)-irradiation and chlorination methodologies. Genes specific to Escherichia coli (uidA) and IncP broad-host-range plasmids (trfA) were monitored using real-time quantitative polymerase chain reaction (qPCR), and total DNA was monitored using absorbance spectroscopy. In wastewater treatment plant experiments, E. coli qPCR results were compared to a recognized culture-based method (Colilert?) for E. coli. In laboratory experiments, dissolved ozone at 8 mg·L–1 significantly destroyed 93% total, 98% E. coli, and 99% of broad-host-range plasmid DNA. Ozonation, UV-irradiation, and chlorination significantly reduced DNA concentrations and culturable E. coli in wastewater treat- ment plant effluent. Chlorination and UV disinfection resulted in 3-log decreases in culture-based E. coli concentrations in wastewater treatment plant effluent while changes were not significant when measured with qPCR. Only ozonation significantly decreased the IncP broad-host-range plasmid trfA gene, although concentrations of 2.2 × 105 copies trfA·L–1 remained in effluent. Disinfection processes utilizing high dissolved ozone concentrations for the destruction of emerging contaminants such as broad-host-range plasmid and total DNA may have utility as methods to ensure downstream environmental health and safe water reuse become more important.展开更多
Background: The accumulation of free radicals is linked to a number of diseases. Free radicals can be scavenged by antioxidants and reduce their harmful effects. It is therefore essential to look for naturally occurri...Background: The accumulation of free radicals is linked to a number of diseases. Free radicals can be scavenged by antioxidants and reduce their harmful effects. It is therefore essential to look for naturally occurring antioxidants that come from plants, as synthetic antioxidants are toxic, carcinogenic and problematic for the environment. Lycopene is one of the carotenoids, a pigment that dissolves in fat and has antioxidant properties. Materials and Methods: The antioxidant and free radical scavenging activity were assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The impact of lycopene on bacteria (E. coli) susceptibility to γ-radiation was examined by radio sensitivity assay. The study also examined the induction of strand breaks in plasmid pUC19 DNA and how lycopene extract protected the DNA from γ-radiation in vitro. Results: At varying concentrations, lycopene demonstrated its ability to scavenge free radicals such as 2, 2-diphenyl-1-picrylhydrazyl (DPPH). IC<sub>50</sub> for lycopene was determined at 112 μg/mL which was almost partial to IC<sub>50</sub> of standard antioxidant L-ascorbic acid. The D<sub>10</sub> value 180 Gy of E. coli was found to be >2-fold higher in the extract-containing lycopene sample than in the extract-free controls. The lycopene extracts inhibited the radiation-induced deterioration of the plasmid pUC19 DNA. At an IC<sub>50</sub> concentration, lycopene provided the highest level of protection. Conclusion: Lycopene functions as an efficient free radical scavenger and possible natural antioxidant source. For cancer patients and others who frequently expose themselves to radiation, lycopene may be a useful plant-based pharmaceutical product for treating a variety of diseases caused by free radicals.展开更多
The possibility of delivering DNA effi ciently to cells represents a crucial issue for the treatment of both genetic and acquired diseases.However,even although the effi ciency of non-viral transfection systems has im...The possibility of delivering DNA effi ciently to cells represents a crucial issue for the treatment of both genetic and acquired diseases.However,even although the effi ciency of non-viral transfection systems has improved in the last decade,none have yet proven to be suffi ciently effective in vivo.We report herein our results on the functionalization of single-walled carbon nanotubes(SWNT)and multi-walled carbon nanotubes(MWNT)by two cationic amphiphiles(lipid RPR120535 and pyrenyl polyamine),their use for the complexation of plasmid DNA,and their efficiency in transfecting cells in vitro.The experiments have shown that the efficiency of transfection is higher when using SWNT instead of MWNT,and that transfection effi ciency is similar or slightly higher when using nanoplexes(SWNT/lipid RPR120535/DNA)instead of lipoplexes(lipid RPR120535/DNA)and several orders of magnitude higher than that of naked DNA.This study therefore shows both that the transfection is better when using SWNTs and that it is dependent on the nature of the amphiphilic molecules adsorbed on the nanotubes.展开更多
Single-chained cationic surfactant dodecyl triethyl ammonium bromide and plasmid DNA together can form vesicles once the concentration of plasmid DNA reaches a critical value (Cove). Bigger the size of plasmid DNA, ...Single-chained cationic surfactant dodecyl triethyl ammonium bromide and plasmid DNA together can form vesicles once the concentration of plasmid DNA reaches a critical value (Cove). Bigger the size of plasmid DNA, higher the value of Cove.展开更多
Plasmid DNA(pDNA)isolation from bacterial cells is one of the most common and critical steps in molecular cloning and biomedical research.Almost all pDNA purification in-volves disruption of bacteria,removal of membra...Plasmid DNA(pDNA)isolation from bacterial cells is one of the most common and critical steps in molecular cloning and biomedical research.Almost all pDNA purification in-volves disruption of bacteria,removal of membrane lipids,proteins and genomic DNA,purifi-cation of pDNA from bulk lysate,and concentration of pDNA for downstream applications.While many liquid-phase and solid-phase pDNA purification methods are used,the final pDNA preparations are usually contaminated with varied degrees of host RNA,which cannot be completely digested by RNase A.To develop a simple,cost-effective,and yet effective method for RNA depletion,we investigated whether commercially available size selection magnetic beads(SSMBs),such as Mag-Bind®TotalPure NGS Kit(or Mag-Bind),can completely deplete bacterial RNA in pDNA preparations.In this proof-of-principle study,we demonstrated that,compared with RNase A digestion and two commercial plasmid affinity purification kits,the SSMB method was highly efficient in depleting contaminating RNA from pDNA minipreps.Gene transfection and bacterial colony formation assays revealed that pDNA purified from SSMB method had superior quality and integrity to pDNA samples cleaned up by RNase A digestion and/or commercial plasmid purification kits.We further demonstrated that the SSMB method completely depleted contaminating RNA in large-scale pDNA samples.Furthermore,the Mag-bind-based SSMB method costs only 5-10%of most commercial plasmid purification kits on a per sample basis.Thus,the reported SSMB method can be a valuable and inexpensive tool for the removal of bacterial RNA for routine pDNA preparations.展开更多
The advent of atomic force microscopy (AFM) provides a powerful tool for imaging individual DNA molecules. Chemotherapy drugs are often related to DNAs. Though many specific drug-DNA interactions have been observed ...The advent of atomic force microscopy (AFM) provides a powerful tool for imaging individual DNA molecules. Chemotherapy drugs are often related to DNAs. Though many specific drug-DNA interactions have been observed by AFM, knowledge about the dynamic interactions between chemotherapy drugs and plasmid DNAs is still scarce. In this work, AFM was applied to investigate the nanoscale interactions between plasmid DNAs and two commercial chemotherapy drugs (methotrexate and cisplatin). Plasmid DNAs were immobilized on mica which was coated by silanes in advance. AFM imaging distinctly revealed the dynamic changes of single plasmid DNAs after the stimulation of methotrexate and cisplatin. Geometric features of plasmid DNAs were extracted from AFM images and the statistical results showed that the geometric features of plasmid DNAs changed significantly after the stimulation of drugs. This research provides a novel idea to study the actions of chemotherapy drugs against plasmid DNAs at the single-molecule level.展开更多
Somatic cells were prepared from sea snail enzyme digests of Porphyra yezoensis thalli. Us ing SDS - Proteinase K as extraction solution, total DNA was isolated from the somatic cells. The crude extracts of total DNA ...Somatic cells were prepared from sea snail enzyme digests of Porphyra yezoensis thalli. Us ing SDS - Proteinase K as extraction solution, total DNA was isolated from the somatic cells. The crude extracts of total DNA were purified with glassmilk, and the resulting DNA was of sufficient quality for digestion of restriction endonuclease. DNA bands were clearly observed in the restriction patterns of EcoRI, PstI and HaeIII respectively. The presence of DNA hands in the restriction pattern of total DNA indicated that the genome of Porphyra yezoensis may be small. Unexpectedly, using guanidinium isoth iocyanate and sarcosyl as extraction solution, a plasmid-like DNA band (2.3 Kb) was directly found in the isolated total DNA of Porphyra yezoensis. A very simple and convenient method for plasmid-like DNA isolation has been established.展开更多
基金Supported by Youth Foundation of Education Department in Sichuan Province (07ZB060)Youth Science and Technology Innovation Fund in Sichuan Agricultural University~~
文摘[Objective] The pathogenic Escherichia coli in musk deer was classified at molecular level to provide basic materials for molecular epidemiology of pathogenic Escherichia coli in musk deer. [Method] Plasmids from 24 pathogenic Escherichia coli in musk deer were extracted by the Lysis Triton method, and then identified by single enzyme digestion with three endonucleases of Hind Ⅲ, EcoR Ⅰ and BamH Ⅰ. [Result] The yield rate of plasmids was 91.6%, and 24 pathogenic Escherichia coli in musk deer had the identical or similar plasmid profiles. [Conclusion] Plasmid DNA analysis offers scientific basis for molecular epidemiology of pathogenic Escherichia coli in musk deer in Sichuan Institute of Musk Deer Breeding.
基金supported by the Science and Technology Department(No.04JY029-018)Education Department of Sichuan Province(No.2006ZD049).
文摘The activities of the catalytic hydrolysis of phosphate diester (BNPP) [bis(p-nitrophenyl)phosphate diester] and plasmid DNA (pUC 18) by mononuclear macrocyclic polyamine metal complexes have been investigated in this paper. The results showed that the highest activity in hydrolysis of BNPP was obtained with le--Zn(II) complex (composed of lipophilic group) as catalyst. The hydrolysis rate enhancement is up to 3.64 × 10^4 fold. These metal complexes could effectively promote the cleavage of plasmid DNA (pUC18) at physiological conditions.
文摘Plasmid vector is increasingly applied to gene therapy or gene vaccine. The production of plasmid pCMV-AP3 for cancer gene therapy was conducted in a modified MBL medium using a recombinant E. coli BL21 system. The effects of different MMBL components on plasmid yield, cell mass and specific plasmid DNA productivity were evaluated on shake-flask scale. The results showed that glucose was the optimal carbon source. High plasmid yield (58.3 mg/L) was obtained when 5.0 g/L glucose was added to MMBL. Glycerol could be chosen as a complementary carbon source because of the highest specific plasmid pro- ductivity (37.9 mg DNA/g DCW). After tests of different levels of nitrogen source and inorganic phosphate, a modified MMBL medium was formulated for optimal plasmid production. Further study showed that the initial acetate addition (less than 4.0 g/L) in MMBL improved plasmid production significantly, although it inhibited cell growth. The results will be useful for large-scale plasmid production using recombinant E. coli system.
文摘Objective:The development of gene carriers for efficient gene delivery into cells has attracted growing attention in recent years.The aim of this study was to achieve a better outcome of AAV-293 cells transfection by plasmid DNA.Methods:We studied the optimal condition for higher efficiency of cationic lipid-mediated cell transfection.Four experimental groups were set.Plasmid DNA and liposome were mixed in each groups at different ratios(μg:μL),1:2.5,1:3.5,1:4.0 and 1:5.0,respectively.LacZ gene functioned as reporter gene,measuring the transfection efficiency of the four groups using the method of X-gal staining.Results:When the ratio was 1:3.5,the cell transfection rate was the highest.While the ratio of 1:2.5 recommended by product manual achieve the lowest transfection rate.Their difference had statistical significance.Conclusion:In order to obtain a higher transfection efficiency,optimization on conditions of the ratio of plasmid DNA to liposome is necessary in cell transfection.
基金Project supported by the National Natural Science Foundation of China(No.40271064)
文摘Polymerase chain reaction (PCR) was used to amplify a 600-base pair (bp) sequence of plasmid pGEX-2T DNA bound on soil colloidal particles from Brown soil (Alfisol) and Red soil (Ultisol), and three different minerals (goethite, kaolinite, montmorillonite). DNA bound on soil colloids, kaolinite, and montmorillonite was not amplified when the complexes were used directly but amplification occurred when the soil colloid or kaolinite-DNA complex was diluted, 10- and 20-fold. The montmorillonite-DNA complex required at least 100-fold dilution before amplification could be detected. DNA bound on goethite was amplified irrespective of whether the complex was used directly, or diluted 10- and 20-fold. The amplification of mineral-bound plasmid DNA by PCR is, therefore, markedly influenced by the type and concentration of minerals used. This information is of fundamental importance to soil molecular microbial ecology with particular reference to monitoring the fate of genetically engineered microorganisms and their recombinant DNA in soil environments.
基金Funded by National Natural Science Foundation of China(No.51208043)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The composites based on the Ti O2 are potentially used in wetland pollution control. In this work, the biological effect of the Ag/Ag Br/Ti O2/Active carbon(AC) composites was studied on the plasmid DNA and Tetrahymena membrane. The atomic force micrograph(AFM) images showed that, in the presence of the composites under illumination, most p UC18 DNA molecules showed quite different topography and were opened and relaxed circle shapes. After DNA was catalyzed for 40 min, all supercoiled and circular DNA were changed into the linear DNA molecules. The gel electrophoresis experiment confirmed the results and demonstrated the dynamic process of DNA degradation. ATR-FTIR spectra revealed that amide groups and PO2-of the phospho-lipid phospho-diester on Tetrahymena surface were oxidized in the presence of the composites under illumination. An increase in the fluorescence polarization of DPH was observed, reflecting a significant decrease in membrane fluidity of Tetrahymena.
文摘For systemic injection of cationic liposome/plasmid DNA (pDNA) complexes (cationic lipoplexes), polyethylene glycol (PEG)-modification (PEGylation) of lipoplexes can enhance their systemic stability. In this study, we examined whether intravenous injection of PEGylated cationic lipoplexes into tumor-bearing mice could deliver pDNA into tumor tissues and induce transgene expression. PEGylation of cationic liposomes could prevent their agglutination with erythrocytes. However, when PEGylated cationic lipoplexes were injected intravenously into tumor-bearing mice, they accumulated in tumor vascular vessels and did not exhibit transgene expression in tumors with both poor and well-developed vascularization. Furthermore, PEGylated cationic lipoplexes of CpG- free pDNA could not increase transgene expression in tumors after intravenous injection. These results suggested that PEGylation could not extravasate cationic lipoplexes from vascular vessels in tumors and abolished transgene expression although it enhanced the systemic stability of cationic lipoplexes by avoiding interactions with blood components such as erythrocytes. Successful delivery of pDNA to tumors by PEGylated cationic liposomes will require a rational strategy and the design of liposomal delivery systems to overcome the issue associated with the use of PEG.
文摘Broad-host-range plasmids are frequently associated with antibiotic resistance genes and can quickly spread antibiotic resistant phenotypes among diverse bacterial populations. Wastewater treatment plants have been identified as reservoirs for broad-host-range plasmids carrying resistance genes. The threat of broad-host-range plasmids released into the environment from wastewater treatment plants has identified the need for disinfection protocols to target broad-host- range plasmid destruction. Here we evaluate the efficacy of dissolved ozone at 2 and 8 mg·L–1 as a primary means for the destruction of broad-host-range plasmid and chromosomal DNA in simulated effluent. Pilot-scale tests using an experimental unit were carried out in municipal wastewater treatment plant effluent and compared with ultraviolet (UV)-irradiation and chlorination methodologies. Genes specific to Escherichia coli (uidA) and IncP broad-host-range plasmids (trfA) were monitored using real-time quantitative polymerase chain reaction (qPCR), and total DNA was monitored using absorbance spectroscopy. In wastewater treatment plant experiments, E. coli qPCR results were compared to a recognized culture-based method (Colilert?) for E. coli. In laboratory experiments, dissolved ozone at 8 mg·L–1 significantly destroyed 93% total, 98% E. coli, and 99% of broad-host-range plasmid DNA. Ozonation, UV-irradiation, and chlorination significantly reduced DNA concentrations and culturable E. coli in wastewater treat- ment plant effluent. Chlorination and UV disinfection resulted in 3-log decreases in culture-based E. coli concentrations in wastewater treatment plant effluent while changes were not significant when measured with qPCR. Only ozonation significantly decreased the IncP broad-host-range plasmid trfA gene, although concentrations of 2.2 × 105 copies trfA·L–1 remained in effluent. Disinfection processes utilizing high dissolved ozone concentrations for the destruction of emerging contaminants such as broad-host-range plasmid and total DNA may have utility as methods to ensure downstream environmental health and safe water reuse become more important.
文摘Background: The accumulation of free radicals is linked to a number of diseases. Free radicals can be scavenged by antioxidants and reduce their harmful effects. It is therefore essential to look for naturally occurring antioxidants that come from plants, as synthetic antioxidants are toxic, carcinogenic and problematic for the environment. Lycopene is one of the carotenoids, a pigment that dissolves in fat and has antioxidant properties. Materials and Methods: The antioxidant and free radical scavenging activity were assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The impact of lycopene on bacteria (E. coli) susceptibility to γ-radiation was examined by radio sensitivity assay. The study also examined the induction of strand breaks in plasmid pUC19 DNA and how lycopene extract protected the DNA from γ-radiation in vitro. Results: At varying concentrations, lycopene demonstrated its ability to scavenge free radicals such as 2, 2-diphenyl-1-picrylhydrazyl (DPPH). IC<sub>50</sub> for lycopene was determined at 112 μg/mL which was almost partial to IC<sub>50</sub> of standard antioxidant L-ascorbic acid. The D<sub>10</sub> value 180 Gy of E. coli was found to be >2-fold higher in the extract-containing lycopene sample than in the extract-free controls. The lycopene extracts inhibited the radiation-induced deterioration of the plasmid pUC19 DNA. At an IC<sub>50</sub> concentration, lycopene provided the highest level of protection. Conclusion: Lycopene functions as an efficient free radical scavenger and possible natural antioxidant source. For cancer patients and others who frequently expose themselves to radiation, lycopene may be a useful plant-based pharmaceutical product for treating a variety of diseases caused by free radicals.
文摘The possibility of delivering DNA effi ciently to cells represents a crucial issue for the treatment of both genetic and acquired diseases.However,even although the effi ciency of non-viral transfection systems has improved in the last decade,none have yet proven to be suffi ciently effective in vivo.We report herein our results on the functionalization of single-walled carbon nanotubes(SWNT)and multi-walled carbon nanotubes(MWNT)by two cationic amphiphiles(lipid RPR120535 and pyrenyl polyamine),their use for the complexation of plasmid DNA,and their efficiency in transfecting cells in vitro.The experiments have shown that the efficiency of transfection is higher when using SWNT instead of MWNT,and that transfection effi ciency is similar or slightly higher when using nanoplexes(SWNT/lipid RPR120535/DNA)instead of lipoplexes(lipid RPR120535/DNA)and several orders of magnitude higher than that of naked DNA.This study therefore shows both that the transfection is better when using SWNTs and that it is dependent on the nature of the amphiphilic molecules adsorbed on the nanotubes.
基金supported by National Natural Scientific Foundation of China(No.21073155)Jiangsu Provincial Natural Scientific Foundation(No.BK2010308)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Single-chained cationic surfactant dodecyl triethyl ammonium bromide and plasmid DNA together can form vesicles once the concentration of plasmid DNA reaches a critical value (Cove). Bigger the size of plasmid DNA, higher the value of Cove.
基金supported in part by research grants from the China Postdoctoral Science Foundation(2019M663446 to ZZ)the Postdoctoral Program of the Natural Science Foundation of Chongqing,China(cstc2019jcyj-bsh0006 to ZZ)+6 种基金WW was supported by the Medical Scientist Training Program of the National Institutes of Health(T32 GM007281)This project was also supported in part by The University of Chicago Cancer Center Support Grant(P30CA014599)the National Center for Advancing Translational Sciences of the National Institutes of Health through Grant Number UL1 TR000430TCH was supported by the Mabel Green Myers Research Endowment Fund and The University of Chicago Orthopaedics Alumni Fund.Funding sources were not involved in the study designin the collection,analysis and interpretation of datain the writing of the reportand in the decision to submit the paper for publication.
文摘Plasmid DNA(pDNA)isolation from bacterial cells is one of the most common and critical steps in molecular cloning and biomedical research.Almost all pDNA purification in-volves disruption of bacteria,removal of membrane lipids,proteins and genomic DNA,purifi-cation of pDNA from bulk lysate,and concentration of pDNA for downstream applications.While many liquid-phase and solid-phase pDNA purification methods are used,the final pDNA preparations are usually contaminated with varied degrees of host RNA,which cannot be completely digested by RNase A.To develop a simple,cost-effective,and yet effective method for RNA depletion,we investigated whether commercially available size selection magnetic beads(SSMBs),such as Mag-Bind®TotalPure NGS Kit(or Mag-Bind),can completely deplete bacterial RNA in pDNA preparations.In this proof-of-principle study,we demonstrated that,compared with RNase A digestion and two commercial plasmid affinity purification kits,the SSMB method was highly efficient in depleting contaminating RNA from pDNA minipreps.Gene transfection and bacterial colony formation assays revealed that pDNA purified from SSMB method had superior quality and integrity to pDNA samples cleaned up by RNase A digestion and/or commercial plasmid purification kits.We further demonstrated that the SSMB method completely depleted contaminating RNA in large-scale pDNA samples.Furthermore,the Mag-bind-based SSMB method costs only 5-10%of most commercial plasmid purification kits on a per sample basis.Thus,the reported SSMB method can be a valuable and inexpensive tool for the removal of bacterial RNA for routine pDNA preparations.
基金supported by the National Natural Science Foundation of China (61503372, 61522312, 61327014 and 61433017)the Youth Innovation Promotion Association CASthe CAS FEA International Partnership Program for Creative Research Teams
文摘The advent of atomic force microscopy (AFM) provides a powerful tool for imaging individual DNA molecules. Chemotherapy drugs are often related to DNAs. Though many specific drug-DNA interactions have been observed by AFM, knowledge about the dynamic interactions between chemotherapy drugs and plasmid DNAs is still scarce. In this work, AFM was applied to investigate the nanoscale interactions between plasmid DNAs and two commercial chemotherapy drugs (methotrexate and cisplatin). Plasmid DNAs were immobilized on mica which was coated by silanes in advance. AFM imaging distinctly revealed the dynamic changes of single plasmid DNAs after the stimulation of methotrexate and cisplatin. Geometric features of plasmid DNAs were extracted from AFM images and the statistical results showed that the geometric features of plasmid DNAs changed significantly after the stimulation of drugs. This research provides a novel idea to study the actions of chemotherapy drugs against plasmid DNAs at the single-molecule level.
文摘Somatic cells were prepared from sea snail enzyme digests of Porphyra yezoensis thalli. Us ing SDS - Proteinase K as extraction solution, total DNA was isolated from the somatic cells. The crude extracts of total DNA were purified with glassmilk, and the resulting DNA was of sufficient quality for digestion of restriction endonuclease. DNA bands were clearly observed in the restriction patterns of EcoRI, PstI and HaeIII respectively. The presence of DNA hands in the restriction pattern of total DNA indicated that the genome of Porphyra yezoensis may be small. Unexpectedly, using guanidinium isoth iocyanate and sarcosyl as extraction solution, a plasmid-like DNA band (2.3 Kb) was directly found in the isolated total DNA of Porphyra yezoensis. A very simple and convenient method for plasmid-like DNA isolation has been established.