In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory...In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.展开更多
The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-trigge...The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-triggering transmission strategy based on periodic sampling,under which a model-based stability criterion for the closed-loop network system is derived,by leveraging a discrete-time looped-functional approach.Marrying the model-based criterion with a data-driven system representation recently developed in the literature,a purely data-driven stability criterion expressed in the form of linear matrix inequalities(LMIs)is established.Meanwhile,the data-driven stability criterion suggests a means for co-designing the event-triggering coefficient matrix and the feedback control gain matrix using only some offline collected state-input data.Finally,numerical results corroborate the efficacy of the proposed distributed data-driven event-triggered network system(ETS)in cutting off data transmissions and the co-design procedure.展开更多
A cosimulation platform was established for distributed control systems via heterogeneous network,which integrated OPNET and Matlab/Simulink.The communication node in this cosimulation platform was built based on OSI ...A cosimulation platform was established for distributed control systems via heterogeneous network,which integrated OPNET and Matlab/Simulink.The communication node in this cosimulation platform was built based on OSI model and UDP protocol,which was adopted as the transportation layer protocol.Data exchanged between the data source module and the specified node.It was fulfilled by revising the corresponding protocol modules based on the characteristics of UDP.The effectiveness of the constructed simulation platform was demonstrated by a numerical example.展开更多
The realizing of Artificial Neural Network(ANN) in Distributed Control System (DCS) is discussed. The model of ANN designed can be called as easily as conventional algorithm. It can act as an ANN controller or as an i...The realizing of Artificial Neural Network(ANN) in Distributed Control System (DCS) is discussed. The model of ANN designed can be called as easily as conventional algorithm. It can act as an ANN controller or as an identifier in adaptive control system.展开更多
Aiming at the shortcomings of a traditional centralized control in an active distribution network(AND),this paper proposes a leader-follower distributed group cooperative control strategy to realize multiple operation...Aiming at the shortcomings of a traditional centralized control in an active distribution network(AND),this paper proposes a leader-follower distributed group cooperative control strategy to realize multiple operation and control tasks for an ADN.The distributed information exchange protocols of the distributed generation(DG)group devoted to node voltage regulation or exchange power control are developed using a DG power utilization ratio as the consensus variable.On these bases,this study further investigates the leader optimal selection method for a DG group to improve the response speed of the distributed control system.Furthermore,a single or multiple leader selection model is established to minimize the constraints of the one-step convergence factor and the number of leaders to improve the response speed of the distributed control system.The simulation results of the IEEE 33 bus standard test system show the effectiveness of the proposed distributed control strategy.In addition,the response speed of a DG control group can be improved effectively when the single or multiple leaders are selected optimally.展开更多
A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to...A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.展开更多
The length of data frame is an important parameter in Medium Access Control(MAC) layer protocol. A method of finding the optimal length of data frame when impulsive disturbance is involved in PowerLine Communications ...The length of data frame is an important parameter in Medium Access Control(MAC) layer protocol. A method of finding the optimal length of data frame when impulsive disturbance is involved in PowerLine Communications (PLC) is proposed. Having analyzed the characteristics of impulsive disturbance in powerline and the collision mechanism between the disturbance and data frame, this letter gives the function of the network channel utilization with the length of data frame in MAC layer and the impulsive disturbance. Our stochastic process simulation shows that it is feasible to get the optimal length of data frame.展开更多
Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of...Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes.展开更多
In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use ...In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use of predictive arguments with a twofold aim:1)Promptly detect malicious agent behaviors affecting normal system operations;2)Apply specific control actions,based on predictive ideas,for mitigating as much as possible undesirable domino effects resulting from adversary operations.Specifically,the multi-agent system is topologically described by a leader-follower digraph characterized by a unique leader and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to instantaneously recognize the attacked agent.Finally,numerical simulations are carried out to show benefits and effectiveness of the proposed approach.展开更多
This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on th...This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.展开更多
This paper examines the stabilization problem of a distributed networked control system under the effect of cyberattacks by employing a hybrid aperiodic triggering mechanism.The cyber-attack considered in the paper is...This paper examines the stabilization problem of a distributed networked control system under the effect of cyberattacks by employing a hybrid aperiodic triggering mechanism.The cyber-attack considered in the paper is a stochastic deception attack at the sensor-controller end. The probability of the occurrence of attack on a subsystem is represented using a random variable. A decentralized hybrid sampled-data strategy is introduced to save energy consumption and reduce the transmission load of the network. In the proposed decentralized strategy, each subsystem can decide independently whether its state should be transmitted to the controller or not. The scheme of the hybrid triggering mechanism for each subsystem composed of two stages: In the first stage, the next sampling instant is computed using a self-triggering strategy. Subsequently, in the second stage, an event-triggering condition is checked at these sampling instants and the control signal is computed only if the event-triggering condition is violated. The self-triggering condition used in the first stage is dependent on the selection of eventtriggering condition of the second stage. Finally, a comparison of the proposed approach with other triggering mechanisms existing in the literature is presented in terms of the sampling instants,transmission frequency and performance measures through simulation examples.展开更多
Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfectio...Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfections are quantization errors, packet dropouts, variable sampling/transmission intervals, vari- able transmission delays, and communication constraints. Then follows in the second part a presentation of several theories that have been applied for controlling networked systems. These theories include: input delay system approach, Markovian system approach, switched system approach, stochastic system approach, impulsive system approach, and predictive control approach. In the last part, some advanced issues in NCS including decentral- ized and distributed NCS, cloud control system, and co-design of NCS are reviewed. Index Terms--Decentralized networked control systems (NCS), distributed networked control systems, network constraints, net- worked control system, quantization, time delays.展开更多
Large-scale and complex process systems are essentially interconnected networks.The automated operation of such process networks requires the solution of control and optimization problems in a distributed manner.In th...Large-scale and complex process systems are essentially interconnected networks.The automated operation of such process networks requires the solution of control and optimization problems in a distributed manner.In this approach,the network is decomposed into several subsystems,each of which is under the supervision of a corresponding computing agent(controller,optimizer).The agents coordinate their control and optimization decisions based on information communication among them.In recent years,algorithms and methods for distributed control and optimization are undergoing rapid development.In this paper,we provide a comprehensive,up-to-date review with perspectives and discussions on possible future directions.展开更多
Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interfere...Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD).展开更多
Nowadays, more and more field devices are connected to the central controller through a serial communication network such as fieldbus or industrial Ethernet. Some of these serial communication networks like controller...Nowadays, more and more field devices are connected to the central controller through a serial communication network such as fieldbus or industrial Ethernet. Some of these serial communication networks like controller area network (CAN) or industrial Ethernet will introduce random transfer delays into the networked control systems (NCS), which causes control performance degradation and even system instability. To address this problem, the adaptive predictive functional control algorithm is derived by applying the concept of predictive functional control to a discrete state space model with variable delay. The method of estimating the networkinduced delay is also proposed to facilitate the control algorithm implementing. Then, an NCS simulation research based on TrueTime simulator is carried out to validate the proposed control algorithm. The numerical simulations show that the proposed adaptive predictive functional control algorithm is effective for NCS with random delays.展开更多
This paper introduces a hierarchical real-time environment for developing ship-bornefire-control system. Advanced computer networks are used to simulate the system with the requiredengagement scenario, including own-s...This paper introduces a hierarchical real-time environment for developing ship-bornefire-control system. Advanced computer networks are used to simulate the system with the requiredengagement scenario, including own-ship and parameters, and data processing and transmission,mission calculation, graphical supervision and gunnery ballistics outputting. The simulation systemis able to receive instruction from, or send information to the command-control center. Furthermore,the system can also be used to compare various designed schemes and analyze the accuracy andeffectiveness of the system.展开更多
文摘In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.
基金supported in part by the National Key Research and Development Program of China(2021YFB1714800)the National Natural Science Foundation of China(62088101,61925303,62173034,U20B2073)+1 种基金the Natural Science Foundation of Chongqing(2021ZX4100027)the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germanys Excellence Strategy—EXC 2075-390740016(468094890)。
文摘The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-triggering transmission strategy based on periodic sampling,under which a model-based stability criterion for the closed-loop network system is derived,by leveraging a discrete-time looped-functional approach.Marrying the model-based criterion with a data-driven system representation recently developed in the literature,a purely data-driven stability criterion expressed in the form of linear matrix inequalities(LMIs)is established.Meanwhile,the data-driven stability criterion suggests a means for co-designing the event-triggering coefficient matrix and the feedback control gain matrix using only some offline collected state-input data.Finally,numerical results corroborate the efficacy of the proposed distributed data-driven event-triggered network system(ETS)in cutting off data transmissions and the co-design procedure.
基金National Natural Science Foundation of China(No.61573237)Natural Science Foundation of Shanghai,China(No.13ZR1416300)
文摘A cosimulation platform was established for distributed control systems via heterogeneous network,which integrated OPNET and Matlab/Simulink.The communication node in this cosimulation platform was built based on OSI model and UDP protocol,which was adopted as the transportation layer protocol.Data exchanged between the data source module and the specified node.It was fulfilled by revising the corresponding protocol modules based on the characteristics of UDP.The effectiveness of the constructed simulation platform was demonstrated by a numerical example.
文摘The realizing of Artificial Neural Network(ANN) in Distributed Control System (DCS) is discussed. The model of ANN designed can be called as easily as conventional algorithm. It can act as an ANN controller or as an identifier in adaptive control system.
文摘Aiming at the shortcomings of a traditional centralized control in an active distribution network(AND),this paper proposes a leader-follower distributed group cooperative control strategy to realize multiple operation and control tasks for an ADN.The distributed information exchange protocols of the distributed generation(DG)group devoted to node voltage regulation or exchange power control are developed using a DG power utilization ratio as the consensus variable.On these bases,this study further investigates the leader optimal selection method for a DG group to improve the response speed of the distributed control system.Furthermore,a single or multiple leader selection model is established to minimize the constraints of the one-step convergence factor and the number of leaders to improve the response speed of the distributed control system.The simulation results of the IEEE 33 bus standard test system show the effectiveness of the proposed distributed control strategy.In addition,the response speed of a DG control group can be improved effectively when the single or multiple leaders are selected optimally.
文摘A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.
文摘The length of data frame is an important parameter in Medium Access Control(MAC) layer protocol. A method of finding the optimal length of data frame when impulsive disturbance is involved in PowerLine Communications (PLC) is proposed. Having analyzed the characteristics of impulsive disturbance in powerline and the collision mechanism between the disturbance and data frame, this letter gives the function of the network channel utilization with the length of data frame in MAC layer and the impulsive disturbance. Our stochastic process simulation shows that it is feasible to get the optimal length of data frame.
基金Project (Nos. 60074011 and 60574049) supported by the National Natural Science Foundation of China
文摘Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes.
文摘In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use of predictive arguments with a twofold aim:1)Promptly detect malicious agent behaviors affecting normal system operations;2)Apply specific control actions,based on predictive ideas,for mitigating as much as possible undesirable domino effects resulting from adversary operations.Specifically,the multi-agent system is topologically described by a leader-follower digraph characterized by a unique leader and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to instantaneously recognize the attacked agent.Finally,numerical simulations are carried out to show benefits and effectiveness of the proposed approach.
基金supported in part by the National Natural Science Foundation of China(61873056,61621004,61420106016)the Fundamental Research Funds for the Central Universities in China(N2004001,N2004002,N182608004)the Research Fund of State Key Laboratory of Synthetical Automation for Process Industries in China(2013ZCX01)。
文摘This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.
文摘This paper examines the stabilization problem of a distributed networked control system under the effect of cyberattacks by employing a hybrid aperiodic triggering mechanism.The cyber-attack considered in the paper is a stochastic deception attack at the sensor-controller end. The probability of the occurrence of attack on a subsystem is represented using a random variable. A decentralized hybrid sampled-data strategy is introduced to save energy consumption and reduce the transmission load of the network. In the proposed decentralized strategy, each subsystem can decide independently whether its state should be transmitted to the controller or not. The scheme of the hybrid triggering mechanism for each subsystem composed of two stages: In the first stage, the next sampling instant is computed using a self-triggering strategy. Subsequently, in the second stage, an event-triggering condition is checked at these sampling instants and the control signal is computed only if the event-triggering condition is violated. The self-triggering condition used in the first stage is dependent on the selection of eventtriggering condition of the second stage. Finally, a comparison of the proposed approach with other triggering mechanisms existing in the literature is presented in terms of the sampling instants,transmission frequency and performance measures through simulation examples.
基金supported by the Deanship of Scientific Research(DSR) at KFUPM through Research Project(IN141048)
文摘Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfections are quantization errors, packet dropouts, variable sampling/transmission intervals, vari- able transmission delays, and communication constraints. Then follows in the second part a presentation of several theories that have been applied for controlling networked systems. These theories include: input delay system approach, Markovian system approach, switched system approach, stochastic system approach, impulsive system approach, and predictive control approach. In the last part, some advanced issues in NCS including decentral- ized and distributed NCS, cloud control system, and co-design of NCS are reviewed. Index Terms--Decentralized networked control systems (NCS), distributed networked control systems, network constraints, net- worked control system, quantization, time delays.
基金Supported by Division of Chemical,Bioengineering,Environmental and Transport Systems(CBET) of the National Science Foundation(NSF) of the United States of America
文摘Large-scale and complex process systems are essentially interconnected networks.The automated operation of such process networks requires the solution of control and optimization problems in a distributed manner.In this approach,the network is decomposed into several subsystems,each of which is under the supervision of a corresponding computing agent(controller,optimizer).The agents coordinate their control and optimization decisions based on information communication among them.In recent years,algorithms and methods for distributed control and optimization are undergoing rapid development.In this paper,we provide a comprehensive,up-to-date review with perspectives and discussions on possible future directions.
文摘Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD).
基金supported by National Natural Science Foundation of China (No. 60674024)Ph.D. Programs Foundation of Civil Aviation University of China (No. 06QD04x)Central College Basic Research Foundation (No. 2010D005)
文摘Nowadays, more and more field devices are connected to the central controller through a serial communication network such as fieldbus or industrial Ethernet. Some of these serial communication networks like controller area network (CAN) or industrial Ethernet will introduce random transfer delays into the networked control systems (NCS), which causes control performance degradation and even system instability. To address this problem, the adaptive predictive functional control algorithm is derived by applying the concept of predictive functional control to a discrete state space model with variable delay. The method of estimating the networkinduced delay is also proposed to facilitate the control algorithm implementing. Then, an NCS simulation research based on TrueTime simulator is carried out to validate the proposed control algorithm. The numerical simulations show that the proposed adaptive predictive functional control algorithm is effective for NCS with random delays.
文摘This paper introduces a hierarchical real-time environment for developing ship-bornefire-control system. Advanced computer networks are used to simulate the system with the requiredengagement scenario, including own-ship and parameters, and data processing and transmission,mission calculation, graphical supervision and gunnery ballistics outputting. The simulation systemis able to receive instruction from, or send information to the command-control center. Furthermore,the system can also be used to compare various designed schemes and analyze the accuracy andeffectiveness of the system.