Osteoblasts were cultured on porous scaffolds of poly(L-lactide-co-glycolide) (PLGA) and PLGA/β-tricalcium phosphate (β-TCP) to evaluate their cytocompatibility.The proliferation of the cells on both scaffolds was e...Osteoblasts were cultured on porous scaffolds of poly(L-lactide-co-glycolide) (PLGA) and PLGA/β-tricalcium phosphate (β-TCP) to evaluate their cytocompatibility.The proliferation of the cells on both scaffolds was examined before and after in vitro degradation for 4,8 and 12 weeks under static (shaking water bath) and dynamic (cyclic loading) conditions.Results indicate that porous PLGA and PLGA/β-TCP scaffolds have good biocompatibility and can be used as effective templates for guiding the growth of osteoblasts.The degradation of the scaffolds affects the proliferation of osteoblasts and the cell viability decreased with the degradation time.展开更多
基金supported by the National Natural Science Foundation of China(10672015 and 30828008)
文摘Osteoblasts were cultured on porous scaffolds of poly(L-lactide-co-glycolide) (PLGA) and PLGA/β-tricalcium phosphate (β-TCP) to evaluate their cytocompatibility.The proliferation of the cells on both scaffolds was examined before and after in vitro degradation for 4,8 and 12 weeks under static (shaking water bath) and dynamic (cyclic loading) conditions.Results indicate that porous PLGA and PLGA/β-TCP scaffolds have good biocompatibility and can be used as effective templates for guiding the growth of osteoblasts.The degradation of the scaffolds affects the proliferation of osteoblasts and the cell viability decreased with the degradation time.