期刊文献+
共找到923篇文章
< 1 2 47 >
每页显示 20 50 100
Near-Infrared Spectroscopy Combined with Partial Least Squares Discriminant Analysis Applied to Identification of Liquor Brands 被引量:4
1
作者 Bin Yang Lijun Yao Tao Pan 《Engineering(科研)》 2017年第2期181-189,共9页
The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for t... The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for the liquor brands with the same flavor and the same alcohol content is essential. However, it is also difficult because the components of such liquor samples are very similar. Near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was applied to identification of liquor brands with the same flavor and alcohol content. A total of 160 samples of Luzhou Laojiao liquor and 200 samples of non-Luzhou Laojiao liquor with the same flavor and alcohol content were used for identification. Samples of each type were randomly divided into the modeling and validation sets. The modeling samples were further divided into calibration and prediction sets using the Kennard-Stone algorithm to achieve uniformity and representativeness. In the modeling and validation processes based on PLS-DA method, the recognition rates of samples achieved 99.1% and 98.7%, respectively. The results show high prediction performance for the identification of liquor brands, and were obviously better than those obtained from the principal component linear discriminant analysis method. NIR spectroscopy combined with the PLS-DA method provides a quick and effective means of the discriminant analysis of liquor brands, and is also a promising tool for large-scale inspection of liquor food safety. 展开更多
关键词 IDENTIFICATION of LIQUOR Brands NEAR-INFRARED Spectroscopy partial Least squares discriminant analysis Principal Component Linear discriminant analysis
下载PDF
Near-Infrared Spectroscopy Coupled with Kernel Partial Least Squares-Discriminant Analysis for Rapid Screening Water Containing Malathion
2
作者 Congying Gu Bingren Xiang +1 位作者 Yilong Su Jianping Xu 《American Journal of Analytical Chemistry》 2013年第3期111-116,共6页
Near-infrared spectroscopy coupled with kernel partial least squares-discriminant analysis was used to rapidly screen water containing malathion. In the wavenumber of 4348 cm-1 to 9091 cm-1, the overall correct classi... Near-infrared spectroscopy coupled with kernel partial least squares-discriminant analysis was used to rapidly screen water containing malathion. In the wavenumber of 4348 cm-1 to 9091 cm-1, the overall correct classification rate of kernel partial least squares-discriminant analysis was 100% for training set, and 100% for test set, with the lowest concentration detected malathion residues in water being 1 μg·ml-1. Kernel partial least squares-discriminant analysis was able to have a good performance in classifying data in nonlinear systems. It was inferred that Near-infrared spectroscopy coupled with the kernel partial least squares-discriminant analysis had a potential in rapid screening other pesticide residues in water. 展开更多
关键词 KERNEL partial Least squares-discriminant analysis NEAR-INFRARED Spectroscopy MALATHION WATER
下载PDF
Discriminant Analysis of Liquor Brands Based on Moving-Window Waveband Screening Using Near-Infrared Spectroscopy 被引量:3
3
作者 Jie Zhong Jiemei Chen +1 位作者 Lijun Yao Tao Pan 《American Journal of Analytical Chemistry》 2018年第3期124-133,共10页
Partial least squares discriminant analysis (PLS-DA) with integrated moving-window (MW) waveband screening was applied to the discriminant analysis of liquor brands with near-infrared (NIR) spectroscopy. Luzhou Laojia... Partial least squares discriminant analysis (PLS-DA) with integrated moving-window (MW) waveband screening was applied to the discriminant analysis of liquor brands with near-infrared (NIR) spectroscopy. Luzhou Laojiao, a popular liquor with strong fragrant flavor, was used as the identified liquor brand (160 samples, negative, 52 vol alcoholicity). Liquors of 10 other brands with strong fragrant flavor were used as the interferential brands (200 samples, positive, 52 vol alcoholicity). The Kennard-Stone algorithm was used for the division of modeling samples to achieve uniformity and representativeness. Based on the MW-PLS-DA, a simplified optimal model set with 157 wavebands was further proposed. This set contained five types of wavebands corresponding to the NIR absorption bands of water, ethanol, and other micronutrients (i.e., acids, aldehydes, phenols, and aromatic compounds) in liquor for practical choice. Using five selected simple models with 4775 - 4239, 7804 - 6569, 6264 - 5844, 9435 - 7896, and 12066 - 10373 cm-1, the validation recognition rates were obtained as 99.3% or higher. Results show good prediction performance and low model complexity, and also provided a valuable reference for designing small dedicated instruments. The proposed method is a promising tool for large-scale inspection of liquor food safety. 展开更多
关键词 LIQUOR Brands NEAR-INFRARED Spectroscopy partial Least squares discriminant analysis Moving-Window Waveband SCREENING Simplified Optimal Model Set
下载PDF
Visible and Near-Infrared Spectroscopic Discriminant Analysis Applied to Brand Identification of Wine 被引量:2
4
作者 Sixia Liao Jiemei Chen Tao Pan 《American Journal of Analytical Chemistry》 2020年第2期104-113,共10页
High-end wine brand is made through the use of high-quality grape variety and yeast strain, and through a unique process. Not only is it rich in nutrients, but also it has a unique taste and a fragrant scent. Brand id... High-end wine brand is made through the use of high-quality grape variety and yeast strain, and through a unique process. Not only is it rich in nutrients, but also it has a unique taste and a fragrant scent. Brand identification of wine is difficult and complex because of high similarity. In this paper, visible and near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was used to explore the feasibility of wine brand identification. Chilean Aoyo wine (2016 vintage) was selected as the identification brand (negative, 100 samples), and various other brands of wine were used as interference brands (positive, 373 samples). Samples of each type were randomly divided into the calibration, prediction and validation sets. For comparison, the PLS-DA models were established in three independent and two complex wavebands of visible (400 - 780 nm), short-NIR (780 - 1100 nm), long-NIR (1100 - 2498 nm), whole NIR (780 - 2498 nm) and whole scanning (400 - 2498 nm). In independent validation, the five models all achieved good discriminant effects. Among them, the visible region model achieved the best effect. The recognition-accuracy rates in validation of negative, positive and total samples achieved 100%, 95.6% and 97.5%, respectively. The results indicated the feasibility of wine brand identification with Vis-NIR spectroscopy. 展开更多
关键词 WINE BRAND IDENTIFICATION Visible-Near Infrared Spectroscopy partial Least squares discriminant analysis Waveband Selection
下载PDF
Visible and Near-Infrared Spectroscopic Discriminant Analysis Applied to Identification of Soy Sauce Adulteration 被引量:1
5
作者 Chunli Fu Jiemei Chen +1 位作者 Lifang Fang Tao Pan 《American Journal of Analytical Chemistry》 2022年第2期51-62,共12页
The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spe... The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spectroscopy combined with standard normal variate-partial least squares-discriminant analysis (SNV-PLS-DA) was used to establish the discriminant analysis models for adulterated and brewed soy sauces. Chubang soy sauce was selected as an identification brand (negative, 70). The adulteration samples (positive, 72) were prepared by mixing Chubang soy sauce and blended soy sauce with different adulteration rates. Among them, the “blended soy sauce” sample was concocted of salt water (NaCl), monosodium glutamate (C<sub>5</sub>H<sub>10</sub>NNaO<sub>5</sub>) and caramel color (C<sub>6</sub>H<sub>8</sub>O<sub>3</sub>). The rigorous calibration-prediction-validation sample design was adopted. For the case of 1 mm, five waveband models (visible, short-NIR, long-NIR, whole NIR and whole scanning regions) were established respectively;in the case of 10 mm, three waveband models (visible, short-NIR and visible-short-NIR regions) for unsaturated absorption were also established respectively. In independent validation, the models of all wavebands in the cases of 1 mm and 10 mm have achieved good discrimination effects. For the case of 1 mm, the visible model achieved the optimal validation effect, the validation recognition-accuracy rate (RAR<sub>V</sub>) was 99.6%;while in the case of 10 mm, both the visible and visible-short-NIR models achieved the optimal validation effect (RAR<sub>V</sub> = 100%). The detection method does not require reagents and is fast and simple, which is easy to promote the application. The results can provide valuable reference for designing small dedicated spectrometers with different measurement modals and different spectral regions. 展开更多
关键词 Visible and Near-Infrared Spectroscopy Soy Sauce Adulteration Identification partial Least squares-discriminant analysis Standard Normal Variate
下载PDF
Rapid recognition of Chinese herbal pieces of Areca catechu by different concocted processes using Fourier transform mid-infrared and near-infrared spectroscopy combined with partial least-squares discriminant analysis 被引量:12
6
作者 Hai-Yan Fu Dong-Chen Huang +2 位作者 Tian-Ming Yang Yuan-Bin She Hao Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2013年第7期639-642,共4页
Rapid and sensitive recognition of herbal pieces according to different concocted processing is crucial to quality control and pharmaceutical effect. Near-infrared (NIR) and mid-infrared (MIR) technology combined ... Rapid and sensitive recognition of herbal pieces according to different concocted processing is crucial to quality control and pharmaceutical effect. Near-infrared (NIR) and mid-infrared (MIR) technology combined with supervised pattern recognition based on partial least-squares discriminant analysis (PLSDA) was attempted to classify and recognize six different concocted processing pieces of 600 Areca catechu L. samples and the influence of fingerprint information preprocessing methods on recognition performance was also investigated in this work. Recognition rates of 99.24%, 100% and 99.49% for original fingerprint, multiple scatter correct (MSC) fingerprint and second derivative (2nd derivative) fingerprint of NIR spectra were achieved by PLSDA models, respectively. Meanwhile, a perfect recognition rate of 100% was obtained for the above three fingerprint models of MIR spectra. In conclusion, PLSDA can rapidly and effectively extract otherness of fingerprint information from NIR and MIR spectra to identify different concocted herbal pieces ofA. catechu. 展开更多
关键词 NIR and MIR spectroscopy partial least-squares discriminant analysis Different concocted processing herbal pieces
原文传递
基于OPLS-DA模型分析不同养殖方式下宁都黄鸡肌肉关键挥发性风味物质
7
作者 葛庆联 刘茵茵 +5 位作者 樊艳凤 马丽娜 贾晓旭 高玉时 周瑶敏 唐修君 《扬州大学学报(农业与生命科学版)》 CAS 北大核心 2024年第4期49-56,共8页
为研究不同养殖方式下宁都黄鸡肌肉关键挥发性风味物质,将试验鸡随机分为笼养组和平养组,饲喂同一日粮。试验鸡达上市日龄时对鸡肉进行感官品尝评价和挥发性风味物质检测,并采用正交偏最小二乘-判别分析(orthogonal partial least squar... 为研究不同养殖方式下宁都黄鸡肌肉关键挥发性风味物质,将试验鸡随机分为笼养组和平养组,饲喂同一日粮。试验鸡达上市日龄时对鸡肉进行感官品尝评价和挥发性风味物质检测,并采用正交偏最小二乘-判别分析(orthogonal partial least squares-discriminant analysis,OPLS-DA)方法筛选与不同养殖方式相关的差异性风味物质。结果表明:平养组和笼养组共有的挥发性风味物质27种,主要为酚类、醇类和烃类。挥发性风味物质中,己醛、1-辛烯-3-醇、E-2-壬烯醛、正己醇、壬醛、2,3-戊二酮、癸醛、2,3-辛二酮、E-2-辛烯醛为具有显著性差异的挥发性风味物质。综上,这一研究可为地方鸡肉品质基于风味物质的评价提供科学依据。 展开更多
关键词 宁都黄鸡 养殖方式 挥发性物质 正交偏最小二乘-判别分析
下载PDF
Functional Data Analysis of Spectroscopic Data with Application to Classification of Colon Polyps
8
作者 Ying Zhu 《American Journal of Analytical Chemistry》 2017年第4期294-305,共12页
In this study, two functional logistic regression models with functional principal component basis (FPCA) and functional partial least squares basis (FPLS) have been developed to distinguish precancerous adenomatous p... In this study, two functional logistic regression models with functional principal component basis (FPCA) and functional partial least squares basis (FPLS) have been developed to distinguish precancerous adenomatous polyps from hyperplastic polyps for the purpose of classification and interpretation. The classification performances of the two functional models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The results indicated that classification abilities of FPCA and FPLS models outperformed those of the PCDA and PLSDA models by using a small number of functional basis components. With substantial reduction in model complexity and improvement of classification accuracy, it is particularly helpful for interpretation of the complex spectral features related to precancerous colon polyps. 展开更多
关键词 FUNCTIONAL Principal COMPONENT analysis FUNCTIONAL partial Least squares FUNCTIONAL Logistic Regression Principal COMPONENT discriminant analysis partial Least squares discriminant analysis
下载PDF
Functional Analysis of Chemometric Data
9
作者 Ana M. Aguilera Manuel Escabias +1 位作者 Mariano J. Valderrama M. Carmen Aguilera-Morillo 《Open Journal of Statistics》 2013年第5期334-343,共10页
The objective of this paper is to present a review of different calibration and classification methods for functional data in the context of chemometric applications. In chemometric, it is usual to measure certain par... The objective of this paper is to present a review of different calibration and classification methods for functional data in the context of chemometric applications. In chemometric, it is usual to measure certain parameters in terms of a set of spectrometric curves that are observed in a finite set of points (functional data). Although the predictor variable is clearly functional, this problem is usually solved by using multivariate calibration techniques that consider it as a finite set of variables associated with the observed points (wavelengths or times). But these explicative variables are highly correlated and it is therefore more informative to reconstruct first the true functional form of the predictor curves. Although it has been published in several articles related to the implementation of functional data analysis techniques in chemometric, their power to solve real problems is not yet well known. Because of this the extension of multivariate calibration techniques (linear regression, principal component regression and partial least squares) and classification methods (linear discriminant analysis and logistic regression) to the functional domain and some relevant chemometric applications are reviewed in this paper. 展开更多
关键词 FUNCTIONAL Data analysis B-SPLINES FUNCTIONAL Principal Component Regression FUNCTIONAL partial Least squares FUNCTIONAL LOGIT Models FUNCTIONAL Linear discriminant analysis Spectroscopy NIR Spectra
下载PDF
基于PLS-DA和LS-SVM的可见/短波近红外光谱鉴定港种四九、十月红和九月鲜菜心种子的可行性研究
10
作者 章海亮 聂训 +5 位作者 廖少敏 詹白勺 罗微 刘书玲 刘雪梅 谢潮勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1718-1723,共6页
目前市面上菜心的品种复杂,不同菜心种子的品质与发芽率不同,但菜心种子单从外观上差别不大,因此区分菜心种子的类别成为了一大难题。为了实现菜心种子类别的快速区分,探究了基于可见/短波近红外光谱分析菜心种子类别的可行性。从南昌... 目前市面上菜心的品种复杂,不同菜心种子的品质与发芽率不同,但菜心种子单从外观上差别不大,因此区分菜心种子的类别成为了一大难题。为了实现菜心种子类别的快速区分,探究了基于可见/短波近红外光谱分析菜心种子类别的可行性。从南昌市种子交易场所购买了港种四九、十月红和九月鲜三个品种的菜心种子,从中挑选出品相较好且大小适中的子粒,将每种菜心种子均匀分为30份,按照2∶1划分为建模集和预测集,所有样本共计90份。通过近红外光谱仪获取采样间隔为1 nm的菜心种子的光谱反射率,波长覆盖范围325~1075 nm,将原始光谱数据采用多元散射校正(MSC)、卷积平滑(S-G)和标准正态变换(SNV)三种预处理方法进行预处理,预处理后的光谱变量建立偏最小二乘回归(PLSR)模型,确定了SNV是最佳预处理方法。采用主成分分析(PCA)对菜心种子进行了聚类分析,从前三个主成分因子(PCs)得分图可知三种菜心种子存在光谱特征差异。将原始光谱变量、前三个PCs(累计贡献97.15%)和基于随机蛙跳(RF)算法挑选的13个特征波长作为偏最小二乘判别(PLS-DA)和最小二乘支持向量机(LS-SVM)模型的输入变量,从模型结果可知:三种输入变量中,采用RF筛选特征波长作为模型输入变量时,模型预测效果最好,PCs建立的模型最差,相比于PCA分析,采用RF筛选出的特征波长更能够反映原始光谱信息。比较不同模型预测效果,LS-SVM模型比PLS-DA模型得到的预测精度更好,其中RF-LS-SVM模型是所有模型中最佳的预测模型,建模集和预测集均为100%。采用可见/短波近红外光谱研究菜心种子的类别可行,并且能够获得很好地预测效果,为菜心种子的快速区分提供了理论依据。 展开更多
关键词 菜心种子 主成分分析 随机青蛙 偏最小二乘判别 最小二乘支持向量机
下载PDF
美国户外休闲产业发展特征及预测模型构建研究——基于PLS和PLS-DA方法的分析
11
作者 雷雯 魏德样 《体育科学研究》 2024年第4期17-23,共7页
户外休闲产业是美国经济的支柱性产业,分析其发展特征和构建预测模型对于我国健身休闲产业健康、可持续发展有重要借鉴价值。研究收集了美国50个州2021年户外休闲产业相关数据,选取27个影响指标,运用PLS和PLS-DA方法,对美国户外休闲产... 户外休闲产业是美国经济的支柱性产业,分析其发展特征和构建预测模型对于我国健身休闲产业健康、可持续发展有重要借鉴价值。研究收集了美国50个州2021年户外休闲产业相关数据,选取27个影响指标,运用PLS和PLS-DA方法,对美国户外休闲产业发展特征进行分析并构建预测模型。研究表明:(1)美国州域户外休闲产业可分为4种发展模式,即总量大占比小型、总量小占比大型、总量较大占比较小型、总量较小占比较大型,4种发展模式在空间上呈现一定集聚分布特征。(2)构建的预测模型有效且精度较高,并筛选出12个VIP指标,经济、人口和社会因素似乎更多地影响美国户外休闲产业发展,而自然环境因素的影响相对较弱。 展开更多
关键词 户外休闲产业 偏最小二乘法 偏最小二乘判别分析 美国
下载PDF
PLS-DA法判别分析木材生物腐朽的研究 被引量:45
12
作者 杨忠 任海青 江泽慧 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2008年第4期793-796,共4页
利用近红外光谱结合PLS-DA判别分析方法可用于食品、药品和农产品等的快速识别或检测,因此,研究利用近红外光谱结合PLS-DA方法来检测木材的生物腐朽。研究结果表明:应用近红外光谱结合PLS-DA方法对培训集样本建立的判别模型,其校正及验... 利用近红外光谱结合PLS-DA判别分析方法可用于食品、药品和农产品等的快速识别或检测,因此,研究利用近红外光谱结合PLS-DA方法来检测木材的生物腐朽。研究结果表明:应用近红外光谱结合PLS-DA方法对培训集样本建立的判别模型,其校正及验证结果与实际分类变量的相关系数均超过0.94,SEC和SEP都低于0.17;利用模型对未参与建模的样本进行检测,发现该模型对未腐朽、白腐和褐腐三种类型样本的判别准确率均为100%(偏差均小于0.5);与SIMCA法相比,PLS-DA法对木材生物腐朽样本的判别准确率更高,说明应用近红外光谱结合PLS-DA方法能快速地检测到木材的生物腐朽,并能准确地判别出木材的生物腐朽类型。 展开更多
关键词 近红外光谱 pls-da 木材 生物腐朽 判别
下载PDF
基于近红外光谱和OPLS-DA的不同牌号卷烟分类识别方法研究 被引量:12
13
作者 潘曦 刘辉 +4 位作者 王昊 刘静 何昀潞 黄伟初 邱昌桂 《分析测试学报》 CAS CSCD 北大核心 2020年第11期1385-1391,共7页
为了对卷烟牌号进行准确分类鉴别,提出了一种基于近红外光谱(NIRS)分析技术结合有监督的模式识别快速鉴别卷烟牌号的新方法。利用标准正态变量变换(SNV)、多元散射校正(MSC)、一阶导数(FD)、二阶导数(SD)和Savitzky-Golay平滑(SG)及其... 为了对卷烟牌号进行准确分类鉴别,提出了一种基于近红外光谱(NIRS)分析技术结合有监督的模式识别快速鉴别卷烟牌号的新方法。利用标准正态变量变换(SNV)、多元散射校正(MSC)、一阶导数(FD)、二阶导数(SD)和Savitzky-Golay平滑(SG)及其相结合的光谱预处理方法对烟丝光谱进行预处理,通过近红外光谱结合主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)和正交偏最小二乘判别分析(OPLS-DA)3种模式识别方法对不同牌号烟丝进行分类识别研究,并采用分类识别正确率作为评价指标。实验结果表明:(1)烟丝近红外光谱主成分得分图交叉重叠,区分不明显,PCA无法识别出5种牌号的成品烟丝;(2)烟丝光谱经MSC+FD预处理后的PLS-DA模型可得到较好的识别效果,校正集和测试集的分类识别正确率分别为100%和98.3%;(3)烟丝光谱经MSC+SD预处理后的OPLS-DA模型的模式识别效果最好,模型对自变量拟合指数(R2X),因变量的拟合指数(R2Y)和模型预测指数(Q2)分别为0.485、0.907和0.748,近红外光谱校正集和测试集的分类识别正确率均为100%。说明近红外光谱技术结合有监督模式识别方法OPLS-DA建立的烟丝牌号分类模型具有高效快速、准确无损的优点,为卷烟烟丝分类提供了一种新的快速鉴别方法。 展开更多
关键词 近红外光谱 成品烟丝 分类识别 主成分分析法(PCA) 偏最小二乘判别分析法(pls-da) 正交偏最小二乘判别分析法(Opls-da)
下载PDF
基于偏最小二乘法判别分析(PLS-DA)的补骨脂炮制前、后组成二神丸提取物的指纹图谱研究和指标成分的定量分析 被引量:5
14
作者 熊瑞 郑凯旋 +3 位作者 李艺丹 张婷婷 李文兵 胡昌江 《中药材》 CAS 北大核心 2017年第11期2563-2568,共6页
目的:通过对已建立的二神丸提取物指纹图谱进行化学计量学分析,并结合含量测定,为补骨脂炮制前、后组成二神丸提取物的鉴别和有效质量控制提供参考。方法:运用偏最小二乘法判别分析(PLS-DA)对已建立的二神丸提取物指纹图谱建立PLS-DA模... 目的:通过对已建立的二神丸提取物指纹图谱进行化学计量学分析,并结合含量测定,为补骨脂炮制前、后组成二神丸提取物的鉴别和有效质量控制提供参考。方法:运用偏最小二乘法判别分析(PLS-DA)对已建立的二神丸提取物指纹图谱建立PLS-DA模型,并利用高效液相色谱(HPLC)对指标成分进行定性鉴定和定量测定。结果:建立的PLS-DA模型可靠,预测能力良好。统计结果显示补骨脂炮制前、后分别组成二神丸的石油醚提取物可明显区分,并揭示了对此区分贡献最大的16个潜在标志性色谱峰,结合标准物质定性鉴定了6个色谱峰,其中4个为贡献最大的潜在标志性指标成分。同时测定了该6个指标成分在10批炮制前和10批炮制后提取物的含量,其中补骨脂素、异补骨脂素、甲基丁香酚和甲基异丁香酚炮制后含量升高,去氢二异丁香酚和补骨脂酚炮制后含量降低。结论:该方法从定性和定量两方面控制炮制前、后二神丸提取物的内在质量,更全面地反映了二神丸提取物的化学成分信息及炮制前后的差异性,为提取物质量评价和控制提供了一个有效的参考。 展开更多
关键词 偏最小二乘法判别分析 补骨脂 二神丸 炮制 指纹图谱 定量分析
下载PDF
近红外光谱结合PLS-DA划分烟叶等级 被引量:10
15
作者 唐果 田旷达 +2 位作者 李祖红 郑波 闵顺耕 《烟草科技》 EI CAS 北大核心 2013年第4期60-62,共3页
为了对烟叶等级进行快速分类,采用云南曲靖地区150个烟草样品近红外光谱,结合偏最小二乘判别分析(PLS-DA),建立了烟叶等级分类模型,并对60个预测集样品进行了等级分类预测。结果表明:①训练集和预测集的预测正确率分别为100.0%(150/150)... 为了对烟叶等级进行快速分类,采用云南曲靖地区150个烟草样品近红外光谱,结合偏最小二乘判别分析(PLS-DA),建立了烟叶等级分类模型,并对60个预测集样品进行了等级分类预测。结果表明:①训练集和预测集的预测正确率分别为100.0%(150/150)和96.7%(58/60)。②PLS-DA对烟叶等级具有良好的分类效果。该模型为烟叶等级分类提供了一种新的快速鉴别分析的方法。 展开更多
关键词 近红外光谱 偏最小二乘判别分析(pls-da) 烟叶等级分类
下载PDF
基于近红外光谱结合PLS-DA法的野外竹种识别技术研究 被引量:12
16
作者 王逸之 董文渊 +1 位作者 李永和 Andrew Kouba 《竹子研究汇刊》 北大核心 2014年第4期16-20,共5页
使用便携式近红外光谱仪野外实测了人面竹、矢竹、淡竹、巴山木竹4个竹种叶片正面近红外光谱,并结合PLS-DA方法对不同竹种叶片近红外光谱进行判别分析。结果表明:应用近红外光谱结合PLS-DA方法对校正集样本建立的判别模型,使用竹叶正面... 使用便携式近红外光谱仪野外实测了人面竹、矢竹、淡竹、巴山木竹4个竹种叶片正面近红外光谱,并结合PLS-DA方法对不同竹种叶片近红外光谱进行判别分析。结果表明:应用近红外光谱结合PLS-DA方法对校正集样本建立的判别模型,使用竹叶正面光谱建模效果较好,校正和验证结果与实际分变量的相关系数均超过了0.96;交叉验证均方根误差(RMSECV)和预测均方根误差(RMSEP)都低于0.14。利用模型对验证集中4个竹种叶片正面近红外光谱进行判别,识别率均为100%,说明近红外光谱结合PLS-DA方法可以用于野外不同竹种的快速识别。 展开更多
关键词 近红外光谱 pls-da 竹类 识别
下载PDF
HS-SPME-GC-MS结合OPLS-DA分析提取方法对牛油果油挥发性香气化合物的影响 被引量:27
17
作者 欧阳红军 刘义军 +3 位作者 袁源 静玮 张利 李积华 《南方农业学报》 CAS CSCD 北大核心 2021年第3期779-788,共10页
【目的】明确热榨法、超临界二氧化碳萃取法和水代法3种提取方法对牛油果油挥发性香气化合物的影响,为牛油果油的提取及开发利用提供数据支持。【方法】采用顶空固相微萃取—气相色谱—质谱(HS-SPME-GC-MS)结合偏最小二乘判别分析(OPLS-... 【目的】明确热榨法、超临界二氧化碳萃取法和水代法3种提取方法对牛油果油挥发性香气化合物的影响,为牛油果油的提取及开发利用提供数据支持。【方法】采用顶空固相微萃取—气相色谱—质谱(HS-SPME-GC-MS)结合偏最小二乘判别分析(OPLS-DA)对热榨法、超临界二氧化碳萃取法和水代法所得牛油果油的挥发性香气化合物进行鉴定、组间区分及总体差异分析。【结果】热榨法、超临界二氧化碳萃取法和水代法3种提取方法所得牛油果油中共鉴定出80种挥发性香气化合物,分别检出40、40和45种挥发性香气化合物,以碳氢类、醛类、酸类和醇类为主。热榨法中碳氢类17种,占比45.68%;醛类5种,占比3.31%;醇类8种,占比9.39%;酸类3种,占比21.65%;水代法中碳氢类13种,占比28.87%;醛类14种,占比26.42%;醇类8种,占比15.92%;酸类2种,占比19.53%。超临界二氧化碳萃取法中碳氢类21种,占比42.99%;醛类9种,占比12.77%;醇类4种,占比7.75%,酸类1种,占比20.23%。基于不同牛油果油样品中挥发性香气化合物的含量进行OPLS-DA分析,实现热榨法、超临界二氧化碳萃取法和水代法所得牛油果油样品的鉴别。3种提取方法所得牛油果油样品的标志差异性化合物有56种,超临界二氧化碳萃取法有癸烷、甲苯等特有香气化合物13种,水代法有2-庚烯-1-醇、1-辛烯-3-醇等特有香气化合物16种,3种提取方法共有己醛、2-庚烯醛等18种香气化合物。【结论】通过HS-SPME-GC-MS结合OPLS-DA找到牛油果油挥发性化合物的差异性,从而筛选出差异性形成的潜在物质,可用于快速鉴别牛油果油的提取方法。 展开更多
关键词 牛油果油 顶空固相微萃取—气相色谱—质谱(HS-SPME-GC-MS) 挥发性香气 偏最小二乘判别分析(Opls-da) 模型
下载PDF
基于胸腔积液肿瘤标志物的PLS-DA和ANN-MPL模型对肺癌的诊断价值分析 被引量:5
18
作者 田刚 周明术 +3 位作者 宋敏 杭永伦 王开正 刘靳波 《成都医学院学报》 CAS 2013年第5期521-524,共4页
目的探讨联合检测胸腔积液中癌胚抗原(CEA)、神经元特异性烯醇化酶(NSE),细胞角蛋白19片段(CYFRA21-1)和CA125对肺癌的诊断价值。方法应用电化学发光免疫分析法测定53例肺癌和52例肺部良性疾病患者胸腔积液中4种肿瘤标志物(CEA、NSE、CY... 目的探讨联合检测胸腔积液中癌胚抗原(CEA)、神经元特异性烯醇化酶(NSE),细胞角蛋白19片段(CYFRA21-1)和CA125对肺癌的诊断价值。方法应用电化学发光免疫分析法测定53例肺癌和52例肺部良性疾病患者胸腔积液中4种肿瘤标志物(CEA、NSE、CYFRA21-1和CA125),结合偏最小二乘判别分析(PLS-DA)线性模型和人工神经网络多层感知(ANN-MPL)非线性模型进行建模诊断和预测分析。结果 PLS-DA模型不能完全鉴别肺癌组和对照组,具有58.5%的灵敏度、98.1%的特异性,78.1%的准确性和84.6%的预测能力。在ANN-MPL中,联合检测4种胸腔积液肿瘤标志物的受试者工作特征曲线下面积(AUC)均优于单一的肿瘤标志物,具有更高的诊断价值(AUC=0.997)。ANN-MPL诊断模型的灵敏度、特异性和准确性分别为93.9%、100.0%和96.8%。ANN-MPL预测模型的灵敏度和特异性分别为90.0%和95.5%,具有92.9%的预测准确性。结论 PLS-DA和ANN-MPL模型在肺癌的鉴别诊断中均取得了较好的效果,ANN-MPL模型更有助于肺癌的鉴别诊断和预测分析。PLS-DA和ANN-MPL模型从数据建模分析的角度证明了肿瘤标志物联合检测的重要性和临床应用价值。 展开更多
关键词 肺癌 肿瘤标志物 诊断 偏最小二乘判别分析 人工神经网络
下载PDF
基于血清CA125、CA153和HCG的PLS-DA模型对卵巢癌的诊断价值分析 被引量:6
19
作者 王琴 秦明丽 刘蔚 《成都医学院学报》 CAS 2014年第4期436-439,共4页
目的探讨联合检测血清中CA125、CA153和HCG对卵巢癌的诊断价值。方法应用电化学发光免疫分析法测定36例卵巢癌患者(卵巢癌组)和32例卵巢良性疾病患者(对照组)血清中3种肿瘤标志物(CA125、CA153和HCG),结合主成分分析法(PCA)和偏最小二... 目的探讨联合检测血清中CA125、CA153和HCG对卵巢癌的诊断价值。方法应用电化学发光免疫分析法测定36例卵巢癌患者(卵巢癌组)和32例卵巢良性疾病患者(对照组)血清中3种肿瘤标志物(CA125、CA153和HCG),结合主成分分析法(PCA)和偏最小二乘判别分析法(PLS-DA)进行建模分析。采用ROC曲线下面积(AUC)对PLS-DA的诊断效能进行评估。结果卵巢癌组血清中CA125、CA153和HCG水平显著升高,均高于对照组,差异具有统计学意义(P<0.05)。PCA模型中卵巢癌组个体空间较分散,而对照组则能较好聚类,两组个体有分离趋势。PLS-DA模型能较好地鉴别卵巢癌组与对照组,差异具有统计学意义(P<0.01),具有100%的灵敏度、78.0%的特异性和88.2%的预测准确性。基于PLS-DA模型的ROC曲线的AUC=0.979,具有较高的诊断效能。结论联合血清中CA125、CA153和HCG建立的PLS-DA模型能较好地鉴别卵巢癌,可用于卵巢癌的早期诊断和预测分析。 展开更多
关键词 卵巢癌 CA125 CA153 HCG 偏最小二乘判别分析
下载PDF
HPLC指纹图谱技术结合PLS-DA在养阴清肺颗粒质量控制中的应用 被引量:9
20
作者 张薇 张洁 岳峰梅 《中国药师》 CAS 2021年第2期218-222,共5页
目的:建立养阴清肺颗粒的HPLC指纹图谱,结合偏最小二乘法-判别分析(PLS-DA),为其质量控制提供参考。方法:采用ZORBAX Eclipse XDB-C18色谱柱(250 mm×4.6 mm,5μm);流动相乙腈(A)-0.12%磷酸水溶液(B)梯度洗脱;体积流量:0.9 ml·... 目的:建立养阴清肺颗粒的HPLC指纹图谱,结合偏最小二乘法-判别分析(PLS-DA),为其质量控制提供参考。方法:采用ZORBAX Eclipse XDB-C18色谱柱(250 mm×4.6 mm,5μm);流动相乙腈(A)-0.12%磷酸水溶液(B)梯度洗脱;体积流量:0.9 ml·min^(-1);分段检测波长为230 nm(检测芍药苷、甘草苷)、280 nm(检测麦冬甲基黄烷酮A)、254 nm(检测丹皮酚)、210 nm(检测梓醇、哈巴苷及哈巴俄苷)、330 nm(检测毛蕊花糖苷);柱温:30℃;进样量:10μl。用中药色谱指纹图谱相似度评价系统(2012A版)建立指纹图谱共有模式和相似度计算,用SIMCA14.1软件建立PLS-DA模型做统计分析。结果:建立12批养阴清肺颗粒的指纹图谱,共确定20个共有指纹峰,通过与对照品指认了8个成分;12批样品指纹图谱相似度为0.959~0.982,通过聚类分析(CA)可将12批样品聚成3类,结合主成分分析(PCA)、偏最小二乘法-判别分析(PLS-DA)发现8个成分是造成不同批次样品差异性的主要标记物。结论:该研究建立指纹图谱方法有助于养阴清肺颗粒整体质量控制,同时为其质量评价提供一种有效手段。 展开更多
关键词 养阴清肺颗粒 指纹图谱 相似度 主成分分析 偏最小二乘法-判别分析 聚类分析
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部