针对目前精馏法处理TDI水解氯废水能耗高和能量利用率低的问题,以某化工厂TDI含氯废水为研究对象,建立自回热精馏技术提纯工艺。含有TDI及水解氯等重组分的原料液经进料泵送至产品塔进行连续精馏,从顶部分离出TDI产品,冷凝的物料进入回...针对目前精馏法处理TDI水解氯废水能耗高和能量利用率低的问题,以某化工厂TDI含氯废水为研究对象,建立自回热精馏技术提纯工艺。含有TDI及水解氯等重组分的原料液经进料泵送至产品塔进行连续精馏,从顶部分离出TDI产品,冷凝的物料进入回流罐,冷凝成液相也进入回流罐,再通过回流泵一部分回流入塔,另一部分采出,采出的TDI产品输送出界区。塔釜采出TDI和少量水解氯重组分,通过塔釜泵采出后输送出界区。采用Aspen Plus V11流程模拟软件对此流程进行模拟,确定了最优进料位置选第10块塔板,理论塔板数为15块塔板,回流比为1.0,塔顶基本没有水解氯存在,达到了要求的塔顶TDI含量≥99.90%、水解氯含量≤0.001 5%。基于自回热精馏降解TDI生产水解氯技术,仅需192 kW的电耗即能维持整个装置的正常运行,运行费用从614.4万元降为214.7万元,每年可降低65.06%的成本。展开更多
针对传统谷物干燥能耗高,粉尘、废热污染严重,干燥品质较差的问题,提出了一种连续型谷物真空干燥系统,该系统采用开式吸收式热泵回收利用谷物在干燥过程中产生的水蒸气及其汽化潜热,兼具低温真空干燥与热泵节能的双重优势。以连续型真...针对传统谷物干燥能耗高,粉尘、废热污染严重,干燥品质较差的问题,提出了一种连续型谷物真空干燥系统,该系统采用开式吸收式热泵回收利用谷物在干燥过程中产生的水蒸气及其汽化潜热,兼具低温真空干燥与热泵节能的双重优势。以连续型真空干燥滚筒实验为依据,设计了基于开式吸收式热泵的连续型真空干燥系统;建立了该系统的物质、能量守恒数学模型;并依托Aspen Plus软件对整个系统流程进行建模,分析了干燥压力、溶液热交换器效率、加热温度和稀溶液浓度对系统性能系数(coefficient of performance,COP)及干燥能耗的影响。结果表明:设计工况下系统COP为1.7285,干燥能耗为3346.92 kJ/(kg·H2O),降低当前传统谷物干燥机能耗的37%;该系统在理论上具有可行性且节能效果显著。提高溶液热交换器效率、降低加热温度以及降低稀溶液浓度均能提高系统COP,降低干燥能耗。展开更多
文摘针对目前精馏法处理TDI水解氯废水能耗高和能量利用率低的问题,以某化工厂TDI含氯废水为研究对象,建立自回热精馏技术提纯工艺。含有TDI及水解氯等重组分的原料液经进料泵送至产品塔进行连续精馏,从顶部分离出TDI产品,冷凝的物料进入回流罐,冷凝成液相也进入回流罐,再通过回流泵一部分回流入塔,另一部分采出,采出的TDI产品输送出界区。塔釜采出TDI和少量水解氯重组分,通过塔釜泵采出后输送出界区。采用Aspen Plus V11流程模拟软件对此流程进行模拟,确定了最优进料位置选第10块塔板,理论塔板数为15块塔板,回流比为1.0,塔顶基本没有水解氯存在,达到了要求的塔顶TDI含量≥99.90%、水解氯含量≤0.001 5%。基于自回热精馏降解TDI生产水解氯技术,仅需192 kW的电耗即能维持整个装置的正常运行,运行费用从614.4万元降为214.7万元,每年可降低65.06%的成本。
文摘针对传统谷物干燥能耗高,粉尘、废热污染严重,干燥品质较差的问题,提出了一种连续型谷物真空干燥系统,该系统采用开式吸收式热泵回收利用谷物在干燥过程中产生的水蒸气及其汽化潜热,兼具低温真空干燥与热泵节能的双重优势。以连续型真空干燥滚筒实验为依据,设计了基于开式吸收式热泵的连续型真空干燥系统;建立了该系统的物质、能量守恒数学模型;并依托Aspen Plus软件对整个系统流程进行建模,分析了干燥压力、溶液热交换器效率、加热温度和稀溶液浓度对系统性能系数(coefficient of performance,COP)及干燥能耗的影响。结果表明:设计工况下系统COP为1.7285,干燥能耗为3346.92 kJ/(kg·H2O),降低当前传统谷物干燥机能耗的37%;该系统在理论上具有可行性且节能效果显著。提高溶液热交换器效率、降低加热温度以及降低稀溶液浓度均能提高系统COP,降低干燥能耗。