期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
改进灰狼算法优化GBDT在PM_(2.5)预测中的应用 被引量:2
1
作者 江雨燕 傅杰 +2 位作者 甘如美江 孙雨辰 王付宇 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1569-1580,共12页
针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局... 针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局搜索能力;利用粒子群算法模拟灰狼种群得出的最佳适应度以用于惩罚项改进灰狼算法中的头狼更新策略。使用改进算法优化的梯度提升树(Gradient Boosting Decision Trees,GBDT)模型对北京市大气污染物监测数据中PM_(2.5)质量浓度进行预测,采用3种评估函数对各模型以及混合模型预测效果得分进行评估。结果显示,本文改进的灰狼算法对梯度提升树的优化效果优于其他算法,均方根误差E RMS为6.65μg/m^(3),平均绝对值误差E MA为3.20μg/m^(3),拟合优度(R^(2))为99%,比传统灰狼算法优化结果的均方根误差减少了19.19μg/m^(3),平均绝对值误差降低了10.03μg/m^(3),拟合优度增加了9百分点;与霍尔顿序列和莱维飞行改进的(Levy Flight-Halton Sequence,LHGWO)相比,改进的灰狼算法预测得分的均方根误差降低了10.39μg/m^(3),平均绝对值误差减小了6.71μg/m^(3),拟合优度提高了5百分点。研究表明了预测模型优化的有效性,为未来城市改善空气质量提供了科学依据和技术支持。 展开更多
关键词 环境学 pm_(2.5)质量浓度预测 改进灰狼算法(GWO) 梯度提升树算法(GBDT) 莱维(Levy)飞行 霍尔顿序列(Halton Sequence) 粒子群算法(PSO)
下载PDF
长沙市冬季人行道PM_(2.5)污染特征及影响因素
2
作者 陈宇 何韶瑶 蔡妍 《中国环境监测》 CAS CSCD 北大核心 2024年第3期107-114,共8页
了解不同气象条件下城市人行道细颗粒物(PM_(2.5))时空分布特征对于指导城市环境评价及街道空间规划布局具有重要意义。选取长沙市车流量及人流量较大的4条道路旁0、5、10 m处的人行道,在冬季晴天、阴天和大风天开展PM_(2.5)质量浓度、... 了解不同气象条件下城市人行道细颗粒物(PM_(2.5))时空分布特征对于指导城市环境评价及街道空间规划布局具有重要意义。选取长沙市车流量及人流量较大的4条道路旁0、5、10 m处的人行道,在冬季晴天、阴天和大风天开展PM_(2.5)质量浓度、风速、温度及相对湿度监测,探讨PM_(2.5)分布特征与气象因子的关系。结果表明:冬季晴天、阴天及大风天的人行道PM_(2.5)质量浓度变化呈现双峰双谷特征,峰值均出现在06:00—08:00,其次为18:00—20:00,谷值出现在14:00—16:00及22:00—24:00;距离机动车道10m处的人行道PM_(2.5)含量低于机动车道旁(即距离机动车道0 m)的人行道PM_(2.5)含量,这种差异在大风天气下更为显著;人行道PM_(2.5)质量浓度与温度、风速呈显著负相关关系,与空气湿度呈显著正相关关系,低温不利于PM_(2.5)扩散,但在大风天温度对PM_(2.5)的影响极小,风对PM_(2.5)含量的变化影响极大,在远离机动车道的人行道更为显著,而高湿度天气有利于PM_(2.5)的凝结。低温、高湿天气下06:00—08:00、18:00—20:00人行道PM_(2.5)质量浓度较高,大风对PM_(2.5)质量浓度具有一定削减作用,早晚高峰减少人行道洒水以降低空气湿度,有利于PM_(2.5)质量浓度的降低,减少PM_(2.5)积累。 展开更多
关键词 pm_(2.5) 气象条件 质量浓度 人行道
下载PDF
集成灶送排风参数对厨房呼吸区PM_(2.5)浓度影响数值模拟研究
3
作者 刘昱 李冲 +2 位作者 麻宏强 曹明明 李超群 《安全与环境学报》 CAS CSCD 北大核心 2024年第11期4434-4444,共11页
为了进一步优化集成灶的排烟性能,提出一种利用集成灶送、排风的厨房新型通风方式,采用正交设计和计算流体学(Computational Fluid Dynamics,CFD)相结合的方法探究影响其工作性能的5种因素:散发速率、排风量、上部送风角度、上部送风速... 为了进一步优化集成灶的排烟性能,提出一种利用集成灶送、排风的厨房新型通风方式,采用正交设计和计算流体学(Computational Fluid Dynamics,CFD)相结合的方法探究影响其工作性能的5种因素:散发速率、排风量、上部送风角度、上部送风速度和下部送风速度。将正交设计方案划分为低、中、高散发速率3类,并运用CFD方法对各方案进行模拟研究。同时,研究新型集成灶在最佳送排风条件下运行时厨房中PM_(2.5)的分布特征。结果显示,散发速率和排风量对呼吸区PM_(2.5)质量浓度影响最为显著,其次是上部送风角度、上部送风速度和下部送风速度。在低(1.3×10^(-7)kg/s)、中(2.5×10^(-7)kg/s)、高(3.7×10^(-7)kg/s)散发速率下,使用无送风功能的传统集成灶,呼吸区平均PM_(2.5)质量浓度分别为0.018 mg/m^(3)、0.235 mg/m^(3)和0.449 mg/m^(3);采用具有送风功能的新型集成灶,呼吸区平均PM_(2.5)质量浓度分别为0.003 mg/m^(3)、0.093 mg/m^(3)和0.152 mg/m^(3),比传统集成灶分别降低了83.3%、60.4%和66.1%。此外,高散发速率下厨房空间平均PM_(2.5)质量浓度减少了35.1%。研究给出了不同散发速率下新型集成灶的最佳送排风参数,优化了集成灶的工作性能,为其创新设计提供了理论基础和有益参考。 展开更多
关键词 环境工程学 集成灶送排风 pm_(2.5)质量浓度 正交设计 数值模拟
下载PDF
高邮近郊站点PM_(2.5)影响因子及来源分析
4
作者 高萍 刘安康 +5 位作者 顾宇 高翔 苏艳 从冯 解舒婷 戴明明 《三峡生态环境监测》 2024年第1期82-90,共9页
利用2021年高邮城市边缘站点小时分辨率的PM_(2.5)质量浓度和气象要素数据,并结合后向轨迹及浓度权重轨迹分析(concentration-weighted trajectory,CWT)方法分析了PM_(2.5)质量浓度的时间变化、影响因素及来源特征。结果表明:观测期间站... 利用2021年高邮城市边缘站点小时分辨率的PM_(2.5)质量浓度和气象要素数据,并结合后向轨迹及浓度权重轨迹分析(concentration-weighted trajectory,CWT)方法分析了PM_(2.5)质量浓度的时间变化、影响因素及来源特征。结果表明:观测期间站点PM_(2.5)质量浓度为(33.20±21.99)μg/m^(3)。PM_(2.5)质量浓度存在显著的季节变化,冬季浓度最高,可达(46.74±26.90)μg/m^(3),夏季浓度最低,仅为(22.62±12.54)μg/m^(3),污染时次主要集中在冬季和春季,合计占比为87.6%。PM_(2.5)质量浓度具有夜间高于白天的特征。气象要素对PM_(2.5)质量浓度的影响较大,并随季节呈现一定的波动。低湿度(<75%)条件有利于PM_(2.5)浓度增长,而高湿度(>75%)条件有利于PM_(2.5)清除。风速对PM_(2.5)浓度影响显著,有降水时PM_(2.5)浓度较非降水时降低37.9%。高邮不同风向风速下对应PM_(2.5)浓度差异显著,高浓度PM_(2.5)主要来自城区对应的偏西及偏南方向。高邮地区PM_(2.5)外来源输送区域差异明显,高邮地区PM_(2.5)潜在源区主要分布在高邮市偏西方向的安徽及河南南部,偏南方向的江苏南部、浙江北部及上海地区,受冬季冷空气南下污染物输送影响,山东中部也存在较大贡献。 展开更多
关键词 高邮 pm_(2.5)质量浓度 变化特征 气象要素 来源解析
下载PDF
面向PM_(2.5)预测的时间序列分解与机器学习融合模型 被引量:4
5
作者 杨长春 聂倩倩 《安全与环境学报》 CAS CSCD 北大核心 2023年第12期4600-4608,共9页
细颗粒物(PM_(2.5))对大气污染和人体健康具有显著影响。为了提高PM_(2.5)质量浓度预报准确率,提出一种将先知(Prophet)时间序列分解算法和极限梯度提升树(Extreme Gradient Boosting,XGBoost)机器学习模型相结合的多变量混合预测模型(P... 细颗粒物(PM_(2.5))对大气污染和人体健康具有显著影响。为了提高PM_(2.5)质量浓度预报准确率,提出一种将先知(Prophet)时间序列分解算法和极限梯度提升树(Extreme Gradient Boosting,XGBoost)机器学习模型相结合的多变量混合预测模型(Prophet-XGBoost)。利用Prophet算法对时间序列可分解的特性,将PM_(2.5)高维质量浓度序列分解成若干低维时序特征分量,并与污染物和气象因素数据集成构建XGBoost预测模型,以得到PM_(2.5)质量浓度的预测值。试验中以南京市PM_(2.5)质量浓度历史数据为例进行实证分析。结果表明,结合Prophet时间序列分解的预测模型,PM_(2.5)质量浓度预测结果的决定系数R^(2)提升至0.658 4。由此可见,Prophet-XGBoost多变量混合预测模型较传统长短期记忆神经网络(Long Short-Term Memory,LSTM)、XGBoost模型能够更好地预测PM_(2.5)日均质量浓度的变化趋势。 展开更多
关键词 环境学 pm_(2.5)质量浓度 时间序列 Prophet算法 极限梯度提升树
下载PDF
2001—2018年非洲尼日尔河流域PM_(2.5)质量浓度的时空变化特征
6
作者 周丽霞 吴涛 +2 位作者 解雪峰 蒋国俊 张建珍 《浙江师范大学学报(自然科学版)》 CAS 2023年第2期201-209,共9页
探究PM_(2.5)质量浓度的时空演变过程,对于明确PM_(2.5)治理方向和推进非洲可持续发展目标至关重要.利用全球遥感反演PM_(2.5)数据集,结合GIS空间分析、空间自相关、Mann-Kendall检验和重标极差分析等方法揭示2001—2018年尼日尔河流域P... 探究PM_(2.5)质量浓度的时空演变过程,对于明确PM_(2.5)治理方向和推进非洲可持续发展目标至关重要.利用全球遥感反演PM_(2.5)数据集,结合GIS空间分析、空间自相关、Mann-Kendall检验和重标极差分析等方法揭示2001—2018年尼日尔河流域PM_(2.5)质量浓度的时空变化特征及趋势.结果表明:(1)2001—2018年,尼日尔河流域PM_(2.5)质量浓度在时间变化上呈现波动且微弱增长趋势,年增长速率为0.06μg/m^(3);(2)尼日尔河流域PM_(2.5)质量浓度在空间上整体呈现东南向西北递减的空间格局,其浓度高值区与低值区表现出强烈的空间集聚性特征,高值区集中在中下游地区的尼日尔东部地区、尼日利亚北部山地及南部三角洲地区,低值区集中在尼日尔河的上游地带、流域北端阿尔及利亚区域和下游支流贝努埃河流域;(3)尼日尔河流域PM_(2.5)质量浓度变化的时空趋势上以不显著增加趋势为普遍特征,且在时间序列上具备长程相关性.研究结果将有助于尼日尔河流域相关国家政府制定更加行之有效的防控措施和方案. 展开更多
关键词 pm_(2.5)质量浓度 空间自相关分析 MANN-KENDALL检验 重标极差分析 尼日尔河流域
下载PDF
2019年~2021年沿海城市PM_(2.5)污染特征、来源和典型污染过程解析 被引量:3
7
作者 单龙 郭振东 +2 位作者 徐凌秋 王玲 周军 《环境科技》 2023年第1期60-65,共6页
根据国控空气自动站和手工监测数据分析了盐城市PM_(2.5)质量浓度水平、来源和典型污染过程组分变化规律。分析结果表明:观测期间盐城市PM_(2.5)平均质量浓度为42.2±25.4μg/m^(3);PM_(2.5)组分中SNA,OM和Soil贡献较高;ρ(OC)/ρ(... 根据国控空气自动站和手工监测数据分析了盐城市PM_(2.5)质量浓度水平、来源和典型污染过程组分变化规律。分析结果表明:观测期间盐城市PM_(2.5)平均质量浓度为42.2±25.4μg/m^(3);PM_(2.5)组分中SNA,OM和Soil贡献较高;ρ(OC)/ρ(EC)均值为4.4,整体受机动车和燃煤共同影响,ρ(NO_(3)^(-))/ρ(SO_(4)^(2-))均值为2.0,移动源污染更为突出;PM2.5来源主要包括二次污染源、交通源、海洋源、生物质燃烧和扬尘源;污染天ρ(NO_(3)^(-))/ρ(SO_(4)^(2-))明显高于清洁天。 展开更多
关键词 pm_(2.5) 质量浓度 特征因子 pmF 典型污染过程
下载PDF
冀中南平原区近地面PM_(2.5)遥感反演
8
作者 王诗瑶 李夫星 +2 位作者 王晨 赵旭雅 玛伊热·买买提 《河北师范大学学报(自然科学版)》 CAS 2023年第6期638-648,共11页
为揭示冀中南平原区近地面PM_(2.5)质量浓度时空变化规律,以空间分辨率为1 km的MAIAC AOD数据为主要估算因子,经AOD补值、垂直校正及湿度校正后,对近地面PM_(2.5)质量浓度进行估算分析.结果表明:MAIAC AOD经缺值修复、垂直校正和湿度校... 为揭示冀中南平原区近地面PM_(2.5)质量浓度时空变化规律,以空间分辨率为1 km的MAIAC AOD数据为主要估算因子,经AOD补值、垂直校正及湿度校正后,对近地面PM_(2.5)质量浓度进行估算分析.结果表明:MAIAC AOD经缺值修复、垂直校正和湿度校正后,能够显著提升近地面PM_(2.5)质量浓度估算精度及时空覆盖度;冀中南平原区PM_(2.5)年均质量浓度空间分布差异性显著,其中高值区主要分布在以石家庄、定州及保定为中心的太行山山前平原区,低值区主要分布在东部平原区;研究区PM_(2.5)质量浓度存在显著季节性差异,冬季最高,其次为秋季和春季,夏季最低.该研究能得出冀中南平原区时空全覆盖的近地面PM_(2.5)质量浓度估算结果,为该区域与PM_(2.5)污染相关的健康风险及空气质量评价提供了科学依据. 展开更多
关键词 pm2.5质量浓度 遥感反演 冀中南平原 时空变化规律
下载PDF
安徽省PM_(2.5)质量浓度时空变化特征及其影响因素分析 被引量:2
9
作者 靳亚萍 彭俊 +1 位作者 凌敏 张兵 《黑龙江工程学院学报》 CAS 2023年第1期14-20,共7页
以2015—2021年9月安徽省空气质量指数为样本,利用GIS空间分析等方法,分析安徽省全域PM_(2.5)质量浓度的时空变化特征,并对可能的影响因素进行探讨。结果表明:1)2015年以来安徽省PM_(2.5)质量浓度在时间变化上呈现逐渐递减趋势,在季节... 以2015—2021年9月安徽省空气质量指数为样本,利用GIS空间分析等方法,分析安徽省全域PM_(2.5)质量浓度的时空变化特征,并对可能的影响因素进行探讨。结果表明:1)2015年以来安徽省PM_(2.5)质量浓度在时间变化上呈现逐渐递减趋势,在季节变化上具有春冬高、夏秋低的特点,在年际变化中2015—2018年PM_(2.5)质量浓度在皖中地区减少幅度最为明显,其中,以合肥市减幅最大;2018—2021年PM_(2.5)质量浓度在皖北地区减少幅度最为显著,以亳州市减幅最大。2)安徽省PM_(2.5)质量浓度在空间分布上呈现由北向南的递减趋势,最高值出现在皖北,最低值出现在皖南,且存在东西部之间的差异。3)自然因素(地形地势、降雨量和风速)和人类活动(产业结构和能源消费、政策和思想理念)对安徽省PM_(2.5)质量浓度的时空分布和变化具有较大的影响,使得安徽省全域PM_(2.5)质量浓度逐渐减少,大气环境质量逐年提高。 展开更多
关键词 安徽省 pm_(2.5)质量浓度 时空变化 影响因素
下载PDF
对流层低层温度和风场结构对开封市冬季PM_(2.5)质量浓度的影响分析 被引量:1
10
作者 王其英 冀翠华 +2 位作者 施雨其 仝妍彦 王华飞 《气象与环境科学》 2023年第2期76-82,共7页
采用2019年12月13日—2020年2月10日开封市空气质量监测站逐日PM_(2.5)质量浓度、郑州探空站数据及NCEP气象资料,分析了PM_(2.5)质量浓度和500 hPa以下逆温层、低层风的变化特征。结果表明,在PM_(2.5)质量浓度静稳积累期,500 hPa东亚中... 采用2019年12月13日—2020年2月10日开封市空气质量监测站逐日PM_(2.5)质量浓度、郑州探空站数据及NCEP气象资料,分析了PM_(2.5)质量浓度和500 hPa以下逆温层、低层风的变化特征。结果表明,在PM_(2.5)质量浓度静稳积累期,500 hPa东亚中纬度环流平直,低层(925 hPa和1000 hPa)多偏南风,近地面相对湿度逐渐增加,对流层中下层多层逆温逐渐建立,此时受本地排放积累、吸湿增长和扩散能力下降的共同作用,再加上较长的持续时间,导致PM_(2.5)质量浓度不断增长。PM_(2.5)质量浓度的快速增长可分为两类:一是高空低槽携带冷空气由华北影响河南,对流层中下层逆温被破坏,京津冀的污染物经太行山东麓向南传输所致;二是高空环流平直,PM_(2.5)颗粒向地面均压场中的辐合线或弱低压中心附近的辐合区积聚,地面高湿弱风,近地逆温层建立或增强,扩散能力下降,共同作用而致。快速清除期,通常伴随着高空低槽携带冷空气影响河南,对流层下层逆温被破坏或减弱,低层多东北风、东风和西北风。另外,850 hPa与925 hPa的垂直风切变可表征大气垂直扩散能力,与12 h后的PM_(2.5)质量浓度(空气质量监测站位于探空站东约60 km处)的Pearson相关系数最大(-0.367),可据此提前12 h预报开封市PM_(2.5)质量浓度变化。 展开更多
关键词 pm_(2.5)质量浓度 逆温层 低层风切变 相关性
下载PDF
成都平原西郊PM_(2.5)载带水溶性离子污染特征 被引量:1
11
作者 夏波 李翔 +2 位作者 罗霜 李思思 罗自武 《四川环境》 2023年第1期87-92,共6页
为探究成都平原西郊冬季颗粒物污染特征,采用离子色谱仪对选择点位冬季PM_(2.5)载带进行离子测定。结合空气站点PM_(2.5)、SO_(2)、NO_(2)质量浓度,分析其浓度特征、酸碱度、相关性及主要来源等情况。结果表明:采样期间,该区域大气PM_(2... 为探究成都平原西郊冬季颗粒物污染特征,采用离子色谱仪对选择点位冬季PM_(2.5)载带进行离子测定。结合空气站点PM_(2.5)、SO_(2)、NO_(2)质量浓度,分析其浓度特征、酸碱度、相关性及主要来源等情况。结果表明:采样期间,该区域大气PM_(2.5)质量浓度均值为73.1μg/m^(3),主要水溶性离子质量浓度均值为27.42μg/m^(3),占比为37.5%;阴阳离子当量比为1.003,PM_(2.5)呈酸性;二次离子(NH_(4)^(+)、SO_(4)^(2-)、NO_(3)^(-))占总水溶性离子质量浓度比值为71.7%且相关性较好,污染期间SNA主要以NH4HSO4和NH4NO_(3)两种形式存在;主成分分析可知燃烧排放、建筑施工扬尘及机动车排放二次转换是造成西郊冬季PM_(2.5)污染的主要原因。通过本研究可以达到对成都平原西部郊区颗粒物水溶性离子污染特征的了解,为该地区大气污染防治提供参考。 展开更多
关键词 pm_(2.5) 载带 水溶性离子 质量浓度 成都平原西郊
下载PDF
Analysis of PM2.5 concentrations in Heilongjiang Province associated with forest cover and other factors 被引量:6
12
作者 Yu Zheng San Li +2 位作者 Chuanshan Zou Xiaojian Ma Guocai Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第1期269-276,共8页
Atmospheric particulate matter(PM2.5) seriously influences air quality. It is considered one of the main environmental triggers for lung and heart diseases. Air pollutants can be adsorbed by forest. In this study we i... Atmospheric particulate matter(PM2.5) seriously influences air quality. It is considered one of the main environmental triggers for lung and heart diseases. Air pollutants can be adsorbed by forest. In this study we investigated the effect of forest cover on urban PM2.5 concentrations in 12 cities in Heilongjiang Province,China. The forest cover in each city was constant throughout the study period. The average daily concentration of PM2.5 in 12 cities was below 75 lg/m^3 during the non-heating period but exceeded this level during heating period. Furthermore, there were more moderate pollution days in six cities. This indicated that forests had the ability to reduce the concentration of PM2.5 but the main cause of air pollution was excessive human interference and artificial heating in winter. We classified the 12 cities according to the average PM2.5 concentrations. The relationship between PM2.5 concentrations and forest cover was obtained by integrating forest cover, land area,heated areas and number of vehicles in cities. Finally,considering the complexity of PM2.5 formation and based on the theory of random forestry, we selected six cities and analyzed their meteorological and air pollutant data. The main factors affecting PM2.5 concentrations were PM10,NO_2, CO and SO_2 in air pollutants while meteorological factors were secondary. 展开更多
关键词 FOREST COVER Heilongjiang PROVINCE Influencing factor pm2.5 concentrations RANDOM FOREST
下载PDF
A New Model Using Multiple Feature Clustering and Neural Networks for Forecasting Hourly PM2.5 Concentrations,and Its Applications in China 被引量:4
13
作者 Hui Liu Zhihao Long +1 位作者 Zhu Duan Huipeng Shi 《Engineering》 SCIE EI 2020年第8期944-956,共13页
Particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM2.5)concentration forecasting is desirable for air pollution early warning.This study proposes an improved hybrid model,named multi-feature clus... Particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM2.5)concentration forecasting is desirable for air pollution early warning.This study proposes an improved hybrid model,named multi-feature clustering decomposition(MCD)–echo state network(ESN)–particle swarm optimization(PSO),for multi-step PM2.5 concentration forecasting.The proposed model includes decomposition and optimized forecasting components.In the decomposition component,an MCD method consisting of rough sets attribute reduction(RSAR),k-means clustering(KC),and the empirical wavelet transform(EWT)is proposed for feature selection and data classification.Within the MCD,the RSAR algorithm is adopted to select significant air pollutant variables,which are then clustered by the KC algorithm.The clustered results of the PM2.5 concentration series are decomposed into several sublayers by the EWT algorithm.In the optimized forecasting component,an ESN-based predictor is built for each decomposed sublayer to complete the multi-step forecasting computation.The PSO algorithm is utilized to optimize the initial parameters of the ESN-based predictor.Real PM2.5 concentration data from four cities located in different zones in China are utilized to verify the effectiveness of the proposed model.The experimental results indicate that the proposed forecasting model is suitable for the multi-step high-precision forecasting of PM2.5 concentrations and has better performance than the benchmark models. 展开更多
关键词 pm2.5 concentrations forecasting pm2.5 concentrations clustering Empirical wavelet transform Multi-step forecasting
下载PDF
Research on PM_(2.5) Concentration Prediction Algorithm Based on Temporal and Spatial Features
14
作者 Song Yu Chen Wang 《Computers, Materials & Continua》 SCIE EI 2023年第6期5555-5571,共17页
PM2.5 has a non-negligible impact on visibility and air quality as an important component of haze and can affect cloud formation and rainfall and thus change the climate,and it is an evaluation indicator of air pollut... PM2.5 has a non-negligible impact on visibility and air quality as an important component of haze and can affect cloud formation and rainfall and thus change the climate,and it is an evaluation indicator of air pollution level.Achieving PM2.5 concentration prediction based on relevant historical data mining can effectively improve air pollution forecasting ability and guide air pollution prevention and control.The past methods neglected the impact caused by PM2.5 flow between cities when analyzing the impact of inter-city PM2.5 concentrations,making it difficult to further improve the prediction accuracy.However,factors including geographical information such as altitude and distance and meteorological information such as wind speed and wind direction affect the flow of PM2.5 between cities,leading to the change of PM2.5 concentration in cities.So a PM2.5 directed flow graph is constructed in this paper.Geographic and meteorological data is introduced into the graph structure to simulate the spatial PM2.5 flow transmission relationship between cities.The introduction of meteorological factors like wind direction depicts the unequal flow relationship of PM2.5 between cities.Based on this,a PM2.5 concentration prediction method integrating spatial-temporal factors is proposed in this paper.A spatial feature extraction method based on weight aggregation graph attention network(WGAT)is proposed to extract the spatial correlation features of PM2.5 in the flow graph,and a multi-step PM2.5 prediction method based on attention gate control loop unit(AGRU)is proposed.The PM2.5 concentration prediction model WGAT-AGRU with fused spatiotemporal features is constructed by combining the two methods to achieve multi-step PM2.5 concentration prediction.Finally,accuracy and validity experiments are conducted on the KnowAir dataset,and the results show that the WGAT-AGRU model proposed in the paper has good performance in terms of prediction accuracy and validates the effectiveness of the model. 展开更多
关键词 Spatiotemporal fusion pm2.5 concentration prediction graph neural network recurrent neural network attention mechanism
下载PDF
A Hybrid Deep Learning Approach for PM2.5 Concentration Prediction in Smart Environmental Monitoring
15
作者 Minh Thanh Vo Anh HVo +1 位作者 Huong Bui Tuong Le 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3029-3041,共13页
Nowadays,air pollution is a big environmental problem in develop-ing countries.In this problem,particulate matter 2.5(PM2.5)in the air is an air pollutant.When its concentration in the air is high in developing countr... Nowadays,air pollution is a big environmental problem in develop-ing countries.In this problem,particulate matter 2.5(PM2.5)in the air is an air pollutant.When its concentration in the air is high in developing countries like Vietnam,it will harm everyone’s health.Accurate prediction of PM2.5 concentrations can help to make the correct decision in protecting the health of the citizen.This study develops a hybrid deep learning approach named PM25-CBL model for PM2.5 concentration prediction in Ho Chi Minh City,Vietnam.Firstly,this study analyzes the effects of variables on PM2.5 concentrations in Air Quality HCMC dataset.Only variables that affect the results will be selected for PM2.5 concentration prediction.Secondly,an efficient PM25-CBL model that integrates a convolutional neural network(CNN)andBidirectionalLongShort-TermMemory(Bi-LSTM)isdeveloped.This model consists of three following modules:CNN,Bi-LSTM,and Fully connected modules.Finally,this study conducts the experiment to compare the performance of our approach and several state-of-the-art deep learning models for time series prediction such as LSTM,Bi-LSTM,the combination of CNN and LSTM(CNN-LSTM),and ARIMA.The empirical results confirm that PM25-CBL model outperforms other methods for Air Quality HCMC dataset in terms of several metrics including Mean Squared Error(MSE),Root Mean Squared Error(RMSE),Mean Absolute Error(MAE),and Mean Absolute Percentage Error(MAPE). 展开更多
关键词 Time series prediction pm2.5 concentration prediction CNN Bi-LSTM network
下载PDF
宁德市消光系数、能见度与PM_(2.5)的关系
16
作者 黄德华 胡淑萍 刘翔宇 《农业灾害研究》 2023年第2期71-73,共3页
利用2019年宁德市监测站提供的逐时PM_(2.5)质量浓度和宁德市气象局提供的大气能见度监测数据,探讨了PM_(2.5)与消光系数、能见度的关系。分析结果表明:(1)宁德市PM_(2.5)质量浓度主要集中在0~50μg/m3之间,夏秋两季PM_(2.5)小于春冬两... 利用2019年宁德市监测站提供的逐时PM_(2.5)质量浓度和宁德市气象局提供的大气能见度监测数据,探讨了PM_(2.5)与消光系数、能见度的关系。分析结果表明:(1)宁德市PM_(2.5)质量浓度主要集中在0~50μg/m3之间,夏秋两季PM_(2.5)小于春冬两季,总体PM_(2.5)污染不严重。(2)宁德市PM_(2.5)质量浓度与大气消光系数呈线性正相关,与大气能见度呈乘幂负相关关系。(3)在不同相对湿度等级中,消光系数、能见度与PM_(2.5)值关系均保持不变,表明影响大气消光系数和能见度的因子包括大气相对湿度与PM_(2.5)值。 展开更多
关键词 消光系数 能见度 pm_(2.5)质量浓度
下载PDF
衡阳市PM_(2.5)质量浓度时空分布特征及影响因素分析
17
作者 穆述鑫 刘语瑶 +1 位作者 徐赞超 刘迎云 《南华大学学报(自然科学版)》 2023年第4期18-24,40,共8页
基于PM_(2.5)与其他五种大气污染物浓度数据以及气象资料,选用普通克里金插值与Spearman相关性分析方法,研究了衡阳市PM_(2.5)质量浓度的时空分布特征及其影响因素。结果表明:1)PM_(2.5)质量浓度年均值总体呈下降趋势,季均值具有冬高夏... 基于PM_(2.5)与其他五种大气污染物浓度数据以及气象资料,选用普通克里金插值与Spearman相关性分析方法,研究了衡阳市PM_(2.5)质量浓度的时空分布特征及其影响因素。结果表明:1)PM_(2.5)质量浓度年均值总体呈下降趋势,季均值具有冬高夏低的特征,月均值变化趋近于“U”型,PM_(2.5)质量浓度小时变化在春冬两季均呈“W”型,夏季为“双峰双谷型”,秋季为“单峰单谷型”。2)PM_(2.5)质量浓度季均值空间分布表现出季节性差异,高值区多集中于衡阳市主城区、衡阳县、衡东县北部、祁东县西北部等地。3)在春、秋、冬三季中,PM_(2.5)与气温、日照时数呈正相关,与相对湿度、风速、降水量呈负相关,但在夏季仅有风速与PM_(2.5)质量浓度具有负相关关系;PM 10、SO_(2)、NO_(2)、CO等污染物与PM_(2.5)在四个季节中均呈正相关,O_(3)与PM_(2.5)除在冬季无相关性外,在其他季节二者之间也具有正相关性。 展开更多
关键词 pm_(2.5)质量浓度 普通克里金插值 时空分布 相关性分析
下载PDF
北京PM_(2.5)化学物种的质量平衡特征 被引量:63
18
作者 杨复沫 贺克斌 +4 位作者 马永亮 张强 Cadle S H Chan T Mulawa P A 《环境化学》 CAS CSCD 北大核心 2004年第3期326-333,共8页
以北京 2个采样点连续采集的样品对PM2 5中的元素、水溶性离子和含碳组分进行分析 .车公庄和清华园PM2 5中有机物的含量分别为 2 7 8%和 30 9% ,是含量最丰富的物种 ,其次是二次无机粒子、土壤尘、元素碳和微量元素 .PM2 5中约有 2 ... 以北京 2个采样点连续采集的样品对PM2 5中的元素、水溶性离子和含碳组分进行分析 .车公庄和清华园PM2 5中有机物的含量分别为 2 7 8%和 30 9% ,是含量最丰富的物种 ,其次是二次无机粒子、土壤尘、元素碳和微量元素 .PM2 5中约有 2 4 %的质量未能鉴别成分 ,相关性分析表明 ,含碳物种的估算所引起的偏差可能是主要的原因 .采暖期重污染周和春季沙尘周PM2 5的化学物种构成悬殊 ,反映了季节性变化的源排放和特殊气象条件的综合作用 . 展开更多
关键词 pm2.5 化学物种 污染源 质量平衡法 分析方法 有机物 微量元素 大气污染
下载PDF
北京区域环境气象数值预报系统及PM_(2.5)预报检验 被引量:43
19
作者 赵秀娟 徐敬 +3 位作者 张自银 张小玲 范水勇 苏捷 《应用气象学报》 CSCD 北大核心 2016年第2期160-172,共13页
基于北京地区快速更新循环同化预报系统(BJ-RUC)、WRF-Chem模式和优选的能见度参数化方案,建立了北京区域环境气象数值预报系统。对2014年全年PM_(2.5)浓度、能见度和APEC(Asia-Pacific Economic Cooperation)期间预报效果检验结果表明... 基于北京地区快速更新循环同化预报系统(BJ-RUC)、WRF-Chem模式和优选的能见度参数化方案,建立了北京区域环境气象数值预报系统。对2014年全年PM_(2.5)浓度、能见度和APEC(Asia-Pacific Economic Cooperation)期间预报效果检验结果表明:该系统对京津冀及周边地区PM_(2.5)浓度的预报效果较好,大部分站点的相关系数在0.6以上,特别足北京的部分站点可达0.8以上,预报结果相比观测总体偏低,随着预报时效的延长,24 h之后预报效果略有下降。相比人工观测,能见度预报结果与自动观测能见度更加接近,对持续性低能见度过程预报与实况吻合较好,对于小时能见度低于10 km的分级检验显示,预报准确率从77%左右逐级下降,2 km以下在40%左右。2014年APEC期间,系统很好地预报出北京地区空气质量指数、PM_(2.5)浓度和能见度的时空演变特征,为APEC期间环境气象预报服务提供了有力的技术支撑。 展开更多
关键词 环境气象 pm(2.5)浓度 能见度 预报检验
下载PDF
北京秋冬季近地层PM_(2.5)质量浓度垂直分布特征 被引量:78
20
作者 杨龙 贺克斌 +1 位作者 张强 王歧东 《环境科学研究》 EI CAS CSCD 北大核心 2005年第2期23-28,共6页
选取秋冬两季各14d对北京地区近地层ρ(PM2 5)垂直分布进行监测,获得ρ(PM2.5)垂直廓线;结合同步测得的气象数据,就气象因素对垂直分布的影响进行了分析;最终拟合了ρ(PM2.5)垂直廓线方程。研究表明:秋冬两季ρ(PM2 5)的垂直分布随高度... 选取秋冬两季各14d对北京地区近地层ρ(PM2 5)垂直分布进行监测,获得ρ(PM2.5)垂直廓线;结合同步测得的气象数据,就气象因素对垂直分布的影响进行了分析;最终拟合了ρ(PM2.5)垂直廓线方程。研究表明:秋冬两季ρ(PM2 5)的垂直分布随高度增加而呈对数递减的规律;风速随高度的变化遵循对数规律;发生逆温时,大气层结稳定,垂直方向上的湍流受到抑制,风速与PM2 5逐时质量浓度在垂直方向的分布呈较好的线性关系,ρ(PM2 5)随高度改变呈显著的对数相关关系;而在非逆温的情况下,PM2 5逐时质量浓度垂直分布与风速线性相关的概率较小,质量浓度的垂直分布与高度的对数关系不显著。 展开更多
关键词 pm2.5 质量浓度 垂直分布 逆温 近地层
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部