期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
Spatial and Temporal Variation of Particulate Matter (PM10 and PM2.5) and Its Health Effects during the Haze Event in Malaysia
1
作者 Afiqah Ma’amor Norazian Mohamed Noor +5 位作者 Izzati Amani Mohd Jafri Nur Alis Addiena Ahmad Zia Ul Saufie Nor Azrita Amin Madalina Boboc Gyorgy Deak 《Journal of Atmospheric Science Research》 2023年第4期26-47,共22页
This study aims to assess and compare levels of particulate matter(PM10 and PM2.5)in urban and industrial areas in Malaysia during haze episodes,which typically occur in the south west monsoon season.The high concentr... This study aims to assess and compare levels of particulate matter(PM10 and PM2.5)in urban and industrial areas in Malaysia during haze episodes,which typically occur in the south west monsoon season.The high concentrations of atmospheric particles are mainly due to pollution from neighbouring countries.Daily PM concentrations were analysed for urban and industrial areas including Alor Setar,Tasek,Shah Alam,Klang,Bandaraya Melaka,Larkin,Balok Baru,and Kuala Terengganu in 2018 and 2019.The analysis employed spatiotemporal to examine how PM levels were distributed.The data summary revealed that PM levels in all study areas were right-skewed,indicating the occurrence of high particulate events.Significant peaks in PM concentrations during haze events were consistently observed between June and October,encompassing the south west monsoon and inter-monsoon periods.The study on acute respiratory illnesses primarily focused on Selangor.Analysis revealed that Klang had the highest mean number of inpatient cases for acute exacerbation of bronchial asthma(AEBA)and acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with values of 260.500 and 185.170,respectively.Similarly,for outpatient cases of AEBA and AECOPD,Klang had the highest average values of 41.67 and 14.00,respectively.Shah Alam and Sungai Buloh did not show a significant increase in cases during periods of biomass burning.The statistical analysis concluded that higher concentrations of PM were associated with increased hospital admissions,particularly from June to September,as shown in the bar diagram.Haze episodes were associated with more healthcare utilization due to haze-related respiratory illnesses,seen in higher inpatient and outpatient visits(p<0.05).However,seasonal variability had minimal impact on healthcare utilization.These findings offer a comprehensive assessment of PM levels during historic haze episodes,providing valuable insights for authorities to develop policies and guidelines for effective monitoring and mitigation of the negative impacts of haze events. 展开更多
关键词 haze Particulate matter(pm10 and pm2.5) AEBA and AECOPD Spatial variability
下载PDF
2015年上海崇明岛PM2.5和 PM10浓度变化特征及气象因素影响分析 被引量:19
2
作者 吴健 齐晓宝 +4 位作者 苏敬华 李佳凤 沙晨燕 熊丽君 王敏 《气象与环境科学》 2019年第3期1-8,共8页
通过对2015年1-12月上海崇明岛崇南地区颗粒物(PM2.5、PM10)浓度的连续监测,研究了PM2.5、PM10在不同季节的动态变化特征及与其他因子(SO2、NO2、O3)的相关性,分析了风向风速和降雨对颗粒物浓度的影响。结果表明:崇明岛PM2.5和PM10浓度... 通过对2015年1-12月上海崇明岛崇南地区颗粒物(PM2.5、PM10)浓度的连续监测,研究了PM2.5、PM10在不同季节的动态变化特征及与其他因子(SO2、NO2、O3)的相关性,分析了风向风速和降雨对颗粒物浓度的影响。结果表明:崇明岛PM2.5和PM10浓度的季节变化明显,呈现冬季的>春季的>秋季的>夏季的的特征,冬季PM2.5和PM10小时浓度均值分别为0.058mg/m^3和0.085mg/m^3,夏季PM2.5和PM10均值分别为0.034mg/m^3和0.054mg/m^3。PM2.5和PM10浓度分别与SO2浓度和NO2浓度显著正相关,与O3显著负相关。全年来看,在西南风向时PM2.5和PM10浓度较高,这主要受该方向上游吴淞工业区、宝钢、石洞口电厂、罗店工业区等工业排放影响;从高浓度颗粒物(PM2.5质量浓度≥0.115mg/m^3)来向看,北和西北风向时出现高浓度颗粒物的频率最高,这主要是受到我国北方采暖季大气颗粒物输送过程对崇明岛区域的脉冲式污染影响所致;PM2.5、PM10实时浓度与相应的风速呈显著负相关。降雨量大于5mm或持续3h及以上的连续降雨对大气颗粒物起到显著的湿清除作用,降雨后PM2.5和PM10质量浓度分别降低了68.0%和66.9%,降雨时和雨后PM2.5浓度为0.025~0.033mg/m^3,均低于我国环境空气PM2.5的一级浓度限值。 展开更多
关键词 pm2.5 pm10 变化特征 气象因素
下载PDF
Fine Particulate Pollution Characteristics in Jinan City
3
作者 Zhang Guiqin Wang Zhaojun +1 位作者 Liu Yutang Wilhelm Hoeflinger 《Chinese Journal of Population,Resources and Environment》 2010年第4期61-64,共4页
The characteristics of fine particulate pollution(PM10 and PM2.5) were measured at urban and suburban sites in Jinan during the 2008-2009 heating and non-heating seasons.The results showed that PM10 and PM2.5 pollutio... The characteristics of fine particulate pollution(PM10 and PM2.5) were measured at urban and suburban sites in Jinan during the 2008-2009 heating and non-heating seasons.The results showed that PM10 and PM2.5 pollution was quite serious,and PM mass concentration was higher during the heating season than the non-heating season.PM was the highest in the chemical factory and lowest in the development zone.The mass concentrations of PM10 and PM2.5 were linearly related,and the mass concentration ratio of PM2.5/PM10 was up to 0.59 in urban areas.PM pollution in Jinan was related to local meteorological factors:PM2.5 mass concentration and humidity were positively correlated,and PM2.5 mass concentration was negatively correlated with both click on the temperature and wind speed,although wind speed varied more. 展开更多
关键词 Fine Particles(pm2.5 and pm10) pollution characteristics Spatial and temporal variations Meteorological factors.
下载PDF
贵阳市秋冬季Pm2.5与PM10中黑碳浓度特征及来源分析 被引量:2
4
作者 敖娅 董娴 +2 位作者 范雪璐 金倩 陈卓 《环境污染与防治》 CAS CSCD 北大核心 2020年第11期1345-1349,1354,共6页
于2017年9月至2018年2月,昼夜连续采集贵阳市大气Pm2.5和PM 10样品,利用黑碳仪对样品中的黑碳浓度进行连续监测,探讨气象参数对黑碳浓度的影响,并利用混合单粒子拉格朗日综合轨迹(HYSPLIT)模型分析其来源。结果表明,贵阳市秋冬季Pm2.5... 于2017年9月至2018年2月,昼夜连续采集贵阳市大气Pm2.5和PM 10样品,利用黑碳仪对样品中的黑碳浓度进行连续监测,探讨气象参数对黑碳浓度的影响,并利用混合单粒子拉格朗日综合轨迹(HYSPLIT)模型分析其来源。结果表明,贵阳市秋冬季Pm2.5中黑碳昼、夜质量浓度分别为1.27~6.87、1.28~10.17μg/m^3,平均值分别为3.21、3.78μg/m^3;PM 10中黑碳昼、夜质量浓度分别为1.62~8.92、1.73~11.94μg/m^3,平均值分别为3.97、4.50μg/m^3,表明夜间变化范围较昼间大,且平均浓度高于昼间。秋季Pm2.5、PM 10中黑碳平均质量浓度分别为3.40、3.56μg/m^3,占比(质量分数)分别为6.18%和5.60%,冬季Pm2.5、PM 10中黑碳平均质量浓度分别为3.56、5.20μg/m^3,占比分别为5.29%和4.59%。黑碳主要富集在Pm2.5中,且呈冬季高、秋季低的季节变化特征。黑碳浓度与大气Pm2.5和PM 10浓度呈较好正相关关系,R分别为0.850和0.870(P<0.01),其变化趋势明显受气压、风速和相对湿度等的影响。后向轨迹分析表明,贵州省本地及重庆市东南部气流对贵阳市秋冬季黑碳浓度贡献较大。 展开更多
关键词 pm2.5 PM 10 黑碳 污染特征 来源
下载PDF
Numerical simulation of an extreme haze pollution event over the North China Plain based on initial and boundary condition ensembles 被引量:3
5
作者 LI Xiaobin LIU Hongbo +1 位作者 ZHANG Ziyin LIU Juanjuan 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第6期434-443,共10页
The North China Plain often su ers heavy haze pollution events in the cold season due to the rapid industrial development and urbanization in recent decades.In the winter of 2015,the megacity cluster of Beijing Tianji... The North China Plain often su ers heavy haze pollution events in the cold season due to the rapid industrial development and urbanization in recent decades.In the winter of 2015,the megacity cluster of Beijing Tianjin Hebei experienced a seven-day extreme haze pollution episode with peak PM2.5(particulate matter(PM)with an aerodynamic diameter≤2.5μm)concentration of 727μg m 3.Considering the in uence of meteorological conditions on pollu-tant evolution,the e ects of varying initial conditions and lateral boundary conditions(LBCs)of the WRF-Chem model on PM2.5 concentration variation were investigated through ensemble methods.A control run(CTRL)and three groups of ensemble experiments(INDE,BDDE,INBDDE)were carried out based on difierent initial conditions and LBCs derived from ERA5 reanalysis data and its 10 ensemble members.The CTRL run reproduced the meteorological conditions and the overall life cycle of the haze event reasonably well,but failed to capture the intense oscillation of the instantaneous PM2.5 concentration.However,the ensemble forecasting showed a considerable advantage to some extent.Compared with the CTRL run,the root-mean-square error(RMSE)of PM2.5 concentration decreased by 4.33%,6.91%,and 8.44%in INDE,BDDE and INBDDE,respectively,and the RMSE decreases of wind direction(5.19%,8.89%and 9.61%)were the dominant reason for the improvement of PM2.5 concentration in the three ensemble experiments.Based on this case,the ensemble scheme seems an e ective method to improve the prediction skill of wind direction and PM2.5 concentration by using the WRF-Chem model. 展开更多
关键词 haze pollution PM 2.5 WRF Chem initial and lateral boundary conditions ensemble forecasting
下载PDF
A new approach to spatial source apportionment of haze pollution in large scale and its application in China 被引量:2
6
作者 Huajun Liu Guangjie Du Yanli Liu 《Chinese Journal of Population,Resources and Environment》 2018年第2期131-148,共18页
Long-lasting expansion of haze pollution in China has already presented a stern challenge to regional joint prevention and control. There is an urgent need to enlarge and reconstruct the coverage of joint prevention a... Long-lasting expansion of haze pollution in China has already presented a stern challenge to regional joint prevention and control. There is an urgent need to enlarge and reconstruct the coverage of joint prevention and control of air pollution in key area. Air quality models can identify and quantify the regional contribution of haze pollution and its key components with the help of numerical simulation, but it is difficult to be applied to larger spatial scale due to the complexity of model parameters. The time series analysis can recognize the existence of spatial interaction of haze pollution between cities, but it has not yet been used to further identify the spatial sources of haze pollution in large scale. Using econometric framework of time series analysis, this paper developed a new approach to perform spatial source apportionment. We applied this approach to calculate the contribution from spatial sources of haze pollution in China, using the monitoring data of particulate matter(PM_(2.5)) across 161 Chinese cities. This approach overcame the limitation of numerical simulation that the model complexity increases at excess with the expansion of sample range, and could effectively deal with severe large-scale haze episodes. 展开更多
关键词 haze pollution spatial source apportionment spatial interaction variance decomposition pm2.5
下载PDF
A Haze Feature Extraction and Pollution Level Identification Pre-Warning Algorithm
7
作者 Yongmei Zhang Jianzhe Ma +3 位作者 Lei Hu Keming Yu Lihua Song Huini Chen 《Computers, Materials & Continua》 SCIE EI 2020年第9期1929-1944,共16页
The prediction of particles less than 2.5 micrometers in diameter(PM2.5)in fog and haze has been paid more and more attention,but the prediction accuracy of the results is not ideal.Haze prediction algorithms based on... The prediction of particles less than 2.5 micrometers in diameter(PM2.5)in fog and haze has been paid more and more attention,but the prediction accuracy of the results is not ideal.Haze prediction algorithms based on traditional numerical and statistical prediction have poor effects on nonlinear data prediction of haze.In order to improve the effects of prediction,this paper proposes a haze feature extraction and pollution level identification pre-warning algorithm based on feature selection and integrated learning.Minimum Redundancy Maximum Relevance method is used to extract low-level features of haze,and deep confidence network is utilized to extract high-level features.eXtreme Gradient Boosting algorithm is adopted to fuse low-level and high-level features,as well as predict haze.Establish PM2.5 concentration pollution grade classification index,and grade the forecast data.The expert experience knowledge is utilized to assist the optimization of the pre-warning results.The experiment results show the presented algorithm can get better prediction effects than the results of Support Vector Machine(SVM)and Back Propagation(BP)widely used at present,the accuracy has greatly improved compared with SVM and BP. 展开更多
关键词 Deep belief networks feature extraction pm2.5 eXtreme gradient boosting algorithm haze pollution
下载PDF
Portrait and Classification of Individual Haze Particulates
8
作者 Clara Yuan Li Mingshuai Ding +10 位作者 Yang Yang Pengcheng Zhang Yao Li Yuecun Wang Longchao Huang Pingjiong Yang Ming Wang Xiao Sha Yameng Xu Chaowei Guo Zhiwei Shan 《Journal of Environmental Protection》 2016年第10期1355-1379,共26页
Haze (known as “Mai” 霾 in Chinese) threatens the health of billions of people across the globe. To begin solving this problem without severely slowing down the economy, one has to mechanistically and geographically... Haze (known as “Mai” 霾 in Chinese) threatens the health of billions of people across the globe. To begin solving this problem without severely slowing down the economy, one has to mechanistically and geographically pinpoint the sources of these pollutants, the key of which is to thoroughly characterize and fingerprint the particulates. Here we present a broad survey and classification of thousands of individual airborne particu-lates by using the Scanning Electron Microscope (SEM) to measure their diverse mor-phologies and chemistries, which could eventually be organized into a “haze finger-print database”. For instance, one collection in Xi’an City, China during March-April 2014 yielded 494 airborne particulates that settled on silicon wafers placed outside the window of a 3<sup>rd</sup> floor office. These 494 particulates were manually imaged with high resolution (down to 2 nm), elementally mapped using Energy-dispersive X-ray Spec-troscopy (EDS), and were identified and categorized into presumed source classes such as construction activities (Ca, Al, Si-O), coal burning (sulfates), biologic (pollen, bac-teria), automotive, mining, steel making, and etc. About 20% of the particulates have mysterious origins, as it is still unclear how they were formed, and a fraction of them contained clearly hazardous elements such as lead and chromium. For future work, we propose using unmanned aerial vehicles with a special “rolling film” substrate that can autonomously collect airborne particulates, a customized SEM auto-imaging system, and machine learning software to establish an online open-access database. The end goal would be to monitor and analyze the particulate pollutants that are pumped into our atmosphere every day, and precisely track down their sources so we can better model and police the quality of the air around us. 展开更多
关键词 pm2.5 pm10 Air pollution FINGERPRINT Robot
下载PDF
Modeling study of regional severe hazes over mid-eastern China in January 2013 and its implications on pollution prevention and control 被引量:110
9
作者 WANG ZiFa LI Jie +15 位作者 WANG Zhe YANG WenYi TANG Xiao GE BaoZhu YAN PinZhong ZHU LiLi CHEN XueShun CHEN HuanSheng WAND Wei LI JianJun LIU Bing WANG XiaoYan WAND Wei ZHAO YiLin LU Ning SU DeBin 《Science China Earth Sciences》 SCIE EI CAS 2014年第1期3-13,共11页
The Nested Air Quality Prediction Model System(NAQPMS)was used to investigate the temporal and spatial variations of PM2.5over tropospheric central eastern China in January 2013.The impact of regional transport and it... The Nested Air Quality Prediction Model System(NAQPMS)was used to investigate the temporal and spatial variations of PM2.5over tropospheric central eastern China in January 2013.The impact of regional transport and its implications on pollution prevention and control were also examined.Comparison between simulated and observed PM2.5showed NAQPMS was able to reproduce the evolution of PM2.5during heavy haze episodes.The results indicated that regional transport of PM2.5played an important role in regional haze episodes in the city cluster including Hebei,Beijing and Tianjin(HBT).The cross-city clusters transport outside HBT and transport among cities inside HBT contributed 20%–35%and 26%–35%of PM2.5as compared with local emission,in HBT respectively.To meet the Air Quality Standards for Grade II,90%,90%and65%of emissions would have to be cut down in Hebei,Tianjin and Beijing,if non-control strategy was taken in the surrounding city clusters of HBT.This implicated that control of emissions in one city cluster is not sufficient to reduce regional haze events,and joint efforts among city clusters are essential.Besides regional transports,two-way feedback between boundary-layer evolution and PM2.5also significantly contributed to the formation of heavy hazes,which contributed 30%of monthly average PM2.5concentration in HBT. 展开更多
关键词 regional hazes trans-boundary transport feedback between boundary-layer evolution and pm2.5 pollution preventionand control
原文传递
Characteristics of air pollution events over Hotan Prefecture at the southwestern edge of Taklimakan Desert, China 被引量:5
10
作者 LI Jingxin WANG Shigong +4 位作者 CHU Jinhua WANG Jiaxin LI Xu YUE Man SHANG Kezheng 《Journal of Arid Land》 SCIE CSCD 2018年第5期686-700,共15页
Hotan Prefecture is located at the southwestern edge of Taklimakan Desert, the world's largest shifting sand desert, of China. The desert is one of the main sources for frequent sand-dust weather events which strongl... Hotan Prefecture is located at the southwestern edge of Taklimakan Desert, the world's largest shifting sand desert, of China. The desert is one of the main sources for frequent sand-dust weather events which strongly affect the air quality of Hotan Prefecture. Although this region is characterized by the highest annual mean PMlo concentration values that are routinely recorded by environmental monitoring stations across China, both this phenomenon and its underlying causes have not been adequately addressed in previous researches. Reliable pollutant PM_10 data are currently retrieved using a tapered element oscillating microbalance (TEOM) 1400a, a direct real-time monitor, while additional concentration values including for PM_2.5, sulfur dioxide (SO_2), nitrogen dioxide (NO_2), carbon monoxide (CO) and ozone (O_3) have been collected in recent years by the Hotan Environmental Monitoring Station. Based on these data, this paper presents a comparison of the influences of different kinds of sand-dust weather events on PM_10 (or PM_2.5) as well as the concentrations of other gaseous pollutants in Hotan Prefecture. It is revealed that the highest monthly average PM_10 concentrations are observed in the spring because of the frequent occurrence of three distinct kinds of sand-dust weather events at this time, including dust storms, blowing dust and floating dust. The floating dust makes the most significant contribution to PM_10 (or PM_2.5) concentration in this region, a result that differs from eastern Chinese cities where the heaviest PM_10 pollution occurs usually in winter and air pollution results from the excess emission of local anthropogenic pollutants. It is also shown that PM_10 concentration varies within wpical dust storms. PM_10 concentrations vary among 20 dust storm events within Hotan Prefecture, and the hourly mean concentrations tend to sharply increase initially then slowly decreasing over time. Data collected from cities in eastern China show the opposite with the hourly mean PM_10 (or PM_2.5) concentration tending to slowly increase then sharply decrease during heavy air pollution due to the excess emission of local anthropogenic pollutants. It is also found that the concentration of gaseous pollutants during sand-dust weather events tends to be lower than those cases under clear sky conditions. This indicates that these dust events effectively remove and rapidly diffuse gaseous pollutants. The analysis also shows that the concentration of SO_2 decreases gradually at the onset of all three kinds of sand-dust weather events because of rapidly increasing wind velocity and the development of favorable atmospheric conditions for diffusion. In contrast, changes in O_3 and NO_2 concentrations conformed to the opposite pattern during all three kinds of sand-dust weather events within this region, implying the inter transformation of these gas species during these events. 展开更多
关键词 pm10 (or pm2.5 concentration sand-dust weather events gaseous pollutants air pollution Taklimakan Desert
下载PDF
南昌市大气颗粒物污染特征及PM2.5来源解析 被引量:19
11
作者 刘小真 任羽峰 +1 位作者 刘忠马 秦文 《环境科学研究》 EI CAS CSCD 北大核心 2019年第9期1546-1555,共10页
为探讨2013年南昌市大气颗粒物的污染特征及分布状况,收集南昌市9个大气监测站点实时发布的PM10和PM2.5数据,分析了ρ(PM10)、ρ(PM2.5)和ρ(PM2.5)/ρ(PM10)的变化规律及其与气态污染物的相关性,并结合污染严重的秋季时段,采用PCA-MLR... 为探讨2013年南昌市大气颗粒物的污染特征及分布状况,收集南昌市9个大气监测站点实时发布的PM10和PM2.5数据,分析了ρ(PM10)、ρ(PM2.5)和ρ(PM2.5)/ρ(PM10)的变化规律及其与气态污染物的相关性,并结合污染严重的秋季时段,采用PCA-MLR(主成分分析-多元线性回归)模型对大气PM2.5中化学组分来源进行解析.结果表明:①ρ(PM10)和ρ(PM2.5)的年均值分别为(115.4±39.1)(69.1±26.8)μg/m^3,均超过GB3095—2012《环境空气质量标准》二级标准限值,ρ(PM10)和ρ(PM2.5)的最高值分别出现在石化、省外办监测站点,最低值出现在林科所监测站点.ρ(PM10)和ρ(PM2.5)季节性变化特征明显,呈冬季>春、秋两季>夏季的趋势,全年ρ(PM10)超标天数占比为25.48%,ρ(PM2.5)超标天数占比为36.71%,各季度ρ(PM2.5)超标天数占比均高于ρ(PM10).②受人为活动和边界层高度的影响,ρ(PM2.5)和ρ(PM10)日变化呈双峰双谷形态,一个波峰出现在08:00—10:00,另一个波峰出现在20:00—22:00,并且晚间小时峰值高于早间,最低值出现在15:00.③ρ(PM2.5)/ρ(PM10)年均值为60.3%,在冬季最高达65.1%,相关性分析发现ρ(PM10)与ρ(PM2.5)存在较显著的线性关系,表明二者具有同源性.④ρ(PM10)、ρ(PM2.5)均与ρ(SO2)、ρ(NO2)、ρ(CO)呈显著正相关,并且冬季相关性高于夏、秋两季;而ρ(PM10)、ρ(PM2.5)均与ρ(O3)全年呈显著负相关,并且夏、秋两季相关性高于冬季,说明气态污染物的二次转化对ρ(PM2.5)和ρ(PM10)有较大影响.⑤南昌市秋季PM2.5的最大污染源为道路扬尘/机动车尾气混合污染源,其次分别为施工扬尘源、燃煤源、冶炼尘/生物质燃烧混合污染源,各污染源对PM2.5的贡献率分别为40.9%、35.8%、12.4%、10.9%.研究显示,南昌市PM2.5的污染程度较PM10严重,PM2.5已成为南昌市大气颗粒物污染的主要组分,PM2.5主要来源为城市扬尘和机动车尾气. 展开更多
关键词 pm10 pm2.5 气态污染物 相关性 PCA-MLR模型
下载PDF
The Assessment of Air Pollution during 2013 and 2014 in Tokat Province
12
作者 Omer Isildak 《Journal of Food Science and Engineering》 2017年第4期209-212,共4页
This study aimed to determine the amount of total polluting matter emitted into the atmosphere from heating and industrial-based emissions and the total pollution bulk of Tokat city center. The annual cycles of some h... This study aimed to determine the amount of total polluting matter emitted into the atmosphere from heating and industrial-based emissions and the total pollution bulk of Tokat city center. The annual cycles of some heavy metal in particulate matters have been investigated at this area in order to elucidate temporal variations as well as major sources processes responsible for their formation. Air particulate samples were collected from three different locations situated around Tokat. These samples were determined for heavy metals by using Flame or graphite-furnace Atomic absorption spectroscopy. Particulate matter concentrations up to 52.43μg/m^3 were observed in sampling area. The initial results of the chemical analysis showed that concentration values of heavy metals in air particles observed were higher than the World Health Organization (WHO) guideline limit values. 展开更多
关键词 Air pollution particle matter pm10 and pm2.5
下载PDF
中国典型城市群PM2.5污染特征研究进展 被引量:30
13
作者 刘晟东 史君楠 +4 位作者 程勇 卢培利 冯婷 王锋文 张培玉 《环境科学研究》 EI CAS CSCD 北大核心 2020年第2期243-251,共9页
为进一步梳理近年来我国城市区域大气PM2.5污染防治方面的研究成果,基于我国31个城市PM2.5污染现状,以城市群为视角,总结了京津冀城市群、长三角城市群与川渝城市群PM2.5组成与污染特征,分析了PM2.5及其含碳气溶胶、水溶性无机离子、地... 为进一步梳理近年来我国城市区域大气PM2.5污染防治方面的研究成果,基于我国31个城市PM2.5污染现状,以城市群为视角,总结了京津冀城市群、长三角城市群与川渝城市群PM2.5组成与污染特征,分析了PM2.5及其含碳气溶胶、水溶性无机离子、地壳元素等的整体特征,并在城市群间进行对比分析.结果表明:①3个城市群的ρ(PM2.5)高低顺序依次为京津冀城市群>川渝城市群>长三角城市群,长距离传输使PM2.5污染成为京津冀城市群、长三角城市群与川渝城市群面临的共同问题.②3个城市群的PM2.5中均以SNA和OC为主,尽管ρ(PM2.5)水平有下降趋势,但个别污染物(如SNA)略呈上升趋势.③京津冀城市群与川渝城市群的ρ(OC)接近,并且均高于长三角城市群的80%,较高的ρ(OC)/ρ(EC)反映我国城市群普遍存在SOC污染.④各城市群PM2.5监测网(如监测时间和采样方法)发展水平迥异,城市群之间的相互影响和传输机制尚不清楚.建议今后的研究向以下几个方面扩展:①对城郊乡村等大气背景点,以及水库、湖泊等地化循环的重要源汇区域开展研究.②针对同一区域开展采样时段更长且研究方法和分析手段上保持一致的研究.③借用国外经验公式时需考虑我国国情,对基础研究方法开展一系列优化,建立符合我国国情的标准化研究方法. 展开更多
关键词 pm2.5 污染特征 城市群
下载PDF
长三角地区城市O3和PM2.5污染特征及影响因素分析 被引量:44
14
作者 孙丹丹 杨书运 +2 位作者 王体健 束蕾 曲雅微 《气象科学》 北大核心 2019年第2期164-177,共14页
O3和PM2.5是影响长三角地区空气质量的主要污染物。利用2016年33个城市大气环境监测站6项污染物的小时浓度及4个省会城市的气象数据进行统计分析,研究了该地区O3和PM2.5浓度的时空分布特征及其影响因素。结果表明:长三角地区O3年平均浓... O3和PM2.5是影响长三角地区空气质量的主要污染物。利用2016年33个城市大气环境监测站6项污染物的小时浓度及4个省会城市的气象数据进行统计分析,研究了该地区O3和PM2.5浓度的时空分布特征及其影响因素。结果表明:长三角地区O3年平均浓度为50~73μg·m-3,平均为61μg·m^-3;除芜湖和宣城外,其余31城市均存在不同程度的超标状况,超标率为0.34%~18.86%,平均为5.68%。O3在5月和9月达到浓度高值;四季O3日变化均呈单峰型,峰值出现在15∶00,夏季O3峰值浓度最高值为157μg·m^-3。O3浓度沿海城市整体高于内陆城市;夏季宿迁—淮安—滁州片区O3污染较重。O3与NO2、CO显著负相关,且与NO2相关性较强;O3与气温、日照时数显著正相关,与相对湿度、降水呈负相关。PM2.5年平均浓度在25~62μg·m-3范围内,平均为49μg·m^-3;各城市均出现PM2.5超标,滁州PM2.5超标率最大,为23.91%。PM2.5在3月和12、1月达到浓度峰值;其日变化呈双峰型,09∶00—10∶00和22∶00—23∶00达到峰值。冬季徐州PM2.5浓度最高,为102μg·m^-3。PM2.5与NO2、CO、SO2、PM10显著正相关,与气温、风速、降水负相关。 展开更多
关键词 O3 pm2.5 污染特征 影响因素 拟合
下载PDF
天津市典型区域PM2.5中水溶性离子污染特征 被引量:10
15
作者 肖致美 徐虹 +4 位作者 李鹏 杨宁 邓小文 陈魁 杨文 《环境科学研究》 EI CAS CSCD 北大核心 2019年第8期1324-1332,共9页
为了解天津市不同区域PM2.5中水溶性离子污染特征,于2015年7月、10月及2016年1月、4月,在天津市南开区(简称“市区”)及武清区采集PM2.5样品,结合气象因素、气态污染物研究,分析了样品中水溶性离子污染特征及来源.结果表明:①天津市市... 为了解天津市不同区域PM2.5中水溶性离子污染特征,于2015年7月、10月及2016年1月、4月,在天津市南开区(简称“市区”)及武清区采集PM2.5样品,结合气象因素、气态污染物研究,分析了样品中水溶性离子污染特征及来源.结果表明:①天津市市区及武清区PM2.5中水溶性离子组分主要为二次离子(SO4^2-、NO3^-、NH4^+);不同区域PM2.5中二次离子各季节占比略有不同,市区为夏季(54.0%)>秋季(42.5%)>春季(41.3%)>冬季(40.7%),武清区为夏季(53.0%)>春季(44.6%)>秋季(43.4%)>冬季(33.2%).②冬季市区、武清区PM2.5中水溶性离子组成差异较大,其他季节水溶性离子组成相似;夏季市区及武清区颗粒物呈酸性,其他季节均呈碱性,冬季武清区颗粒物碱性强于市区.③不同季节市区及武清区PM2.5中SO4^2-均以(NH4)2SO4形式存在,NO3^-冬季以NH4NO3形式存在,其他季节NO3^-主要以NH4NO3和HNO3形式共存;市区Cl^-主要以NH4Cl、KCl和NaCl形式存在,武清区Cl^-主要以NH4Cl、KCl形式存在.④对市区及武清区来说,均相反应和非均相反应是SO4^2-重要生成途径,均相反应是生成NO3^-的主要途径.研究显示,代表一次排放的机动车源、燃煤源和二次无机粒子混合源对天津市PM2.5中水溶性离子贡献率最高,工业源和扬尘源对市区的影响较大,农业源对武清区的影响较大. 展开更多
关键词 pm2.5 水溶性离子 污染特征 来源解析
下载PDF
南京市PM2.5中金属元素污染特征及健康风险 被引量:17
16
作者 李慧明 钱新 +1 位作者 冷湘梓 戴前英 《环境监控与预警》 2021年第1期7-13,共7页
监测分析了南京市浦口区典型工业区(2016年12月—2017年10月)PM 2.5中金属元素的浓度,分析了季节差异及来源,评价了健康风险。结果表明,PM 2.5年均值为61.24μg/m 3,全年有33.33%的天数超过《环境空气质量标准》(GB 3095—2012)的日均... 监测分析了南京市浦口区典型工业区(2016年12月—2017年10月)PM 2.5中金属元素的浓度,分析了季节差异及来源,评价了健康风险。结果表明,PM 2.5年均值为61.24μg/m 3,全年有33.33%的天数超过《环境空气质量标准》(GB 3095—2012)的日均限值。绝大多数金属元素的平均值为:冬季>春季>秋季>夏季。As的全年平均值为(2.01±1.09)ng/m 3,较为接近我国环境标准限值。PM 2.5中金属元素主要来自工业排放、自然过程、金属冶炼及交通活动,Cr、Ni、As、Cd、Cu、Zn和Pb的富集性较高。健康风险评价结果显示,Mn的非致癌风险最高,所有金属对儿童和成人的总非致癌风险值为0.0884,低于安全阈值1;Cr(Ⅵ)的致癌风险最高,所有金属对儿童和成人的总致癌风险分别为6.23×10-7和2.49×10-6,均在可接受水平内。 展开更多
关键词 细颗粒物 金属元素 污染特征 健康风险 南京
下载PDF
曹妃甸采暖期和非采暖期PM2.5中不同重金属元素污染特征及健康风险评价 被引量:9
17
作者 方波 曾豪 +6 位作者 张磊 郝珂璐 王雅慧 郝玉兰 王学生 王茜 曹向可 《环境科学研究》 EI CAS CSCD 北大核心 2020年第12期2785-2793,共9页
为探讨曹妃甸采暖期和非采暖期PM 2.5中Cr、Pb、As和Cd元素的污染特征、来源及健康风险,以华北理工大学曹妃甸校区为研究地点,于2017年12月-2018年10月采集98份PM 2.5样品.利用重量法测定空气中PM 2.5浓度,使用电感耦合等离子体质谱仪分... 为探讨曹妃甸采暖期和非采暖期PM 2.5中Cr、Pb、As和Cd元素的污染特征、来源及健康风险,以华北理工大学曹妃甸校区为研究地点,于2017年12月-2018年10月采集98份PM 2.5样品.利用重量法测定空气中PM 2.5浓度,使用电感耦合等离子体质谱仪分析PM 2.5中4种重金属元素(Cr、Pb、As和Cd)的浓度;采用Wilcoxon Mann-Whitney U检验比较采暖期与非采暖期,以及PM 2.5超标日与非超标日各元素含量的差异,利用Kruskal-Wallis H检验法比较不同PM 2.5浓度分级下4种金属元素浓度差异,用PMF(正定矩阵因子分解)模型对4种重金属元素的来源及贡献率进行解析,并用美国环境保护局推荐的人体暴露健康风险评价模型进行健康风险评估.结果表明:①曹妃甸采暖期PM 2.5及Pb、As和Cd浓度均高于非采暖期,而Cr浓度略低于非采暖期.②PM 2.5超标日Pb、As和Cd浓度均高于非超标日,不同PM 2.5浓度级别下Pb、As和Cd浓度有所差异,且Pb、As和Cd浓度随PM 2.5浓度的增加而增加.③PMF模型源解析表明,燃煤源及交通源是曹妃甸采暖期PM 2.5金属元素主要来源,二者贡献率分别为50.4%和31.7%;工业源及交通源是非采暖期PM 2.5金属元素的主要来源,二者贡献率分别为47.4%和37.0%.④健康风险评价结果表明,采暖期和非采暖期4种重金属元素的非致癌风险值均小于1.采暖期3种致癌性重金属(Cr、As和Cd)对成年男性、成年女性和儿童青少年的致癌风险均高于人类可接受风险水平(1×10^-6);非采暖期Cr和As对成年男性、成年女性和儿童青少年的致癌风险均高于人类可接受风险水平;重金属非致癌风险(Cr、Pb、As和Cd)和致癌风险(Cr、As和Cd)指数高低均呈成年男性>成年女性>儿童青少年的特征.研究显示,在采暖期和非采暖期曹妃甸PM 2.5中Pb、As和Cd浓度随PM 2.5浓度的增加而增加,燃煤源和工业源是其主要来源,Cr、As和Cd对人群存在一定的致癌风险. 展开更多
关键词 PM 2.5 金属元素 污染特征 健康风险评价 曹妃甸
下载PDF
J市PM2.5污染特征及防治策略研究 被引量:1
18
作者 于振波 刘玉萍 +2 位作者 李广来 刘薇 贾琳琳 《环境科学与管理》 CAS 2019年第10期107-112,共6页
根据2015年、2016年J市5个空气质量自动监测点位PM 2.5相关浓度数据,对J市PM 2.5污染特征及防治策略进行了探究。结果表明,J市2016年3、11、12月PM 2.5均出现早晚高峰的高值,早高峰高值出现的时间分别为8时、9时、11时,这与逆温层的厚... 根据2015年、2016年J市5个空气质量自动监测点位PM 2.5相关浓度数据,对J市PM 2.5污染特征及防治策略进行了探究。结果表明,J市2016年3、11、12月PM 2.5均出现早晚高峰的高值,早高峰高值出现的时间分别为8时、9时、11时,这与逆温层的厚度关系密切,晚高峰高值出现的时间均为20时,主要的污染源贡献来自燃煤污染和机动车污染;J市5、6月份发电厂点位PM 2.5数值均出现剧烈波动的状况,考虑是监测设备运行稳定性存在问题;佳纺点位出现PM 2.5异常高点,主要来自棚户区及小散污企业污染物排放贡献,其他点位异常高点,主要来自点位附近污染物排放量瞬时增加。此外,还从监测点位布设与管理、加强部门合作、强化污染管控等方面提出了相应的防治策略。 展开更多
关键词 pm2.5 污染特征 防治策略
下载PDF
湖州市局部区域大气PM2.5浓度分布特性实测分析
19
作者 温洋 李振海 周李 《建筑热能通风空调》 2017年第2期42-45,41,共5页
随着城市大气污染的加重,控制PM2.5污染的要求越来越迫切。本文以湖州市局部区域为研究对象,实地测试研究区域内的大气PM2.5浓度,分析PM2.5浓度分布特性,探讨研究区域内各主要污染源对本区域PM2.5浓度分布的影响。得出结论:在多数时间内... 随着城市大气污染的加重,控制PM2.5污染的要求越来越迫切。本文以湖州市局部区域为研究对象,实地测试研究区域内的大气PM2.5浓度,分析PM2.5浓度分布特性,探讨研究区域内各主要污染源对本区域PM2.5浓度分布的影响。得出结论:在多数时间内,各测点PM2.5浓度随时间的变化趋势比较一致;实测区域的PM2.5浓度由下风向到上风向逐渐降低,且下降幅度较小;本区域的PM2.5主要来源为输入性污染;关注的污染源中,某大型食堂对测点区域PM2.5污染影响较大,某工厂有一定影响,主干道、水泥搅拌站、热电厂及某中型食堂影响则较小。 展开更多
关键词 大气pm2.5浓度 实测 分布特性 污染源
下载PDF
Assessment of Pollution Levels of Suspended Particulate Matter on an Hourly and a Daily Time Scale in West African Cities: Case Study of Ouagadougou (Burkina Faso)
20
作者 Issoufou Ouarma Bernard Nana +2 位作者 Kayaba Haro Antoine Béré Jean Koulidiati 《Journal of Geoscience and Environment Protection》 2020年第11期119-138,共20页
In Western countries, research works on air quality have reinforced in recent years because of the links between the level of particulate pollution in numerous cities and the appearing of various health disorders incl... In Western countries, research works on air quality have reinforced in recent years because of the links between the level of particulate pollution in numerous cities and the appearing of various health disorders including cardio-respiratory pathologies, acute bronchopneumonia, lung cancer, etc. In sub-Saharan Africa countries, particularly Burkina Faso, there is very few similar research. In the present work, the pollution levels of airborne particle in the city of Ouagadougou have been assessed through two campaigns of in situ measurements of suspended particulate matter concentrations. These measurements which have concerned PM<sub>1</sub>, PM<sub>2.5</sub> and PM<sub>10</sub> were performed using a portable device (AEROCET531S) at nine sites in 2018 and at ten sites in 2019. These sites are located on roadside, administrative services, secondary education establishments and outlying districts. The results show that: 1) the PM1 concentrations values presented no significant variation between days, seasons or sampling sites;2) the 24-hour PM<sub>2.5</sub> concentrations often exceeding WHO recommended concentrations and, 3) the 24-hour PM<sub>10</sub> concentrations exceed WHO recommended concentrations regardless of the season or the sampling site. In indeed, the average 24-hour concentrations are 20 ± 4, 87 ± 16 and 951 ± 266 μg<span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&minus;</span></span>3</sup> for the PM1, PM<sub>2.5</sub> and PM<sub>10</sub>, respectively. They are 17 ± 3, 29 ± 5 and 158 ± 43 μg<span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&minus;</span></span>3</sup>, respectively, in 2018 dry season and, 12 ± 1, 22 ± 9 and 187 ± 67 μg<span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&minus;</span></span>3</sup>, respectively, in 2019 rainy season. 展开更多
关键词 Urban Air pollution PM1 PM2.5 PM10 AEROCET OUAGADOUGOU
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部