This study aims to assess and compare levels of particulate matter(PM10 and PM2.5)in urban and industrial areas in Malaysia during haze episodes,which typically occur in the south west monsoon season.The high concentr...This study aims to assess and compare levels of particulate matter(PM10 and PM2.5)in urban and industrial areas in Malaysia during haze episodes,which typically occur in the south west monsoon season.The high concentrations of atmospheric particles are mainly due to pollution from neighbouring countries.Daily PM concentrations were analysed for urban and industrial areas including Alor Setar,Tasek,Shah Alam,Klang,Bandaraya Melaka,Larkin,Balok Baru,and Kuala Terengganu in 2018 and 2019.The analysis employed spatiotemporal to examine how PM levels were distributed.The data summary revealed that PM levels in all study areas were right-skewed,indicating the occurrence of high particulate events.Significant peaks in PM concentrations during haze events were consistently observed between June and October,encompassing the south west monsoon and inter-monsoon periods.The study on acute respiratory illnesses primarily focused on Selangor.Analysis revealed that Klang had the highest mean number of inpatient cases for acute exacerbation of bronchial asthma(AEBA)and acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with values of 260.500 and 185.170,respectively.Similarly,for outpatient cases of AEBA and AECOPD,Klang had the highest average values of 41.67 and 14.00,respectively.Shah Alam and Sungai Buloh did not show a significant increase in cases during periods of biomass burning.The statistical analysis concluded that higher concentrations of PM were associated with increased hospital admissions,particularly from June to September,as shown in the bar diagram.Haze episodes were associated with more healthcare utilization due to haze-related respiratory illnesses,seen in higher inpatient and outpatient visits(p<0.05).However,seasonal variability had minimal impact on healthcare utilization.These findings offer a comprehensive assessment of PM levels during historic haze episodes,providing valuable insights for authorities to develop policies and guidelines for effective monitoring and mitigation of the negative impacts of haze events.展开更多
Particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM2.5)concentration forecasting is desirable for air pollution early warning.This study proposes an improved hybrid model,named multi-feature clus...Particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM2.5)concentration forecasting is desirable for air pollution early warning.This study proposes an improved hybrid model,named multi-feature clustering decomposition(MCD)–echo state network(ESN)–particle swarm optimization(PSO),for multi-step PM2.5 concentration forecasting.The proposed model includes decomposition and optimized forecasting components.In the decomposition component,an MCD method consisting of rough sets attribute reduction(RSAR),k-means clustering(KC),and the empirical wavelet transform(EWT)is proposed for feature selection and data classification.Within the MCD,the RSAR algorithm is adopted to select significant air pollutant variables,which are then clustered by the KC algorithm.The clustered results of the PM2.5 concentration series are decomposed into several sublayers by the EWT algorithm.In the optimized forecasting component,an ESN-based predictor is built for each decomposed sublayer to complete the multi-step forecasting computation.The PSO algorithm is utilized to optimize the initial parameters of the ESN-based predictor.Real PM2.5 concentration data from four cities located in different zones in China are utilized to verify the effectiveness of the proposed model.The experimental results indicate that the proposed forecasting model is suitable for the multi-step high-precision forecasting of PM2.5 concentrations and has better performance than the benchmark models.展开更多
The planetary boundary layer height(PBLH) was calculated using the radiosonde sounding data, including120 L-band operational sites and 8 GPS sites in China. The diurnal and seasonal variations of PBLH were analyzed us...The planetary boundary layer height(PBLH) was calculated using the radiosonde sounding data, including120 L-band operational sites and 8 GPS sites in China. The diurnal and seasonal variations of PBLH were analyzed using radiosonde sounding(OBS-PBLH) and ERA data(ERA-PBLH). Based on comparison and error analyses, we discussed the main error sources in these data. The frequency distributions of PBLH variations under different regimes(the convective boundary layer, the neutral residual layer, and the stable boundary layer) can be well fitted by a Gamma distribution and the shape parameter k and scale parameter s values were obtained for different regions of China. The variation characteristics of PBLH were found in summer under these three regimes for different regions. The relationships between PBLH and PM_(2.5) concentration generally follow a power law under very low or no precipitation conditions in the region of Beijing, Tianjin and Hebei in summer. The results usually deviated from this power distribution only under strong precipitation or high relative humidity conditions because of the effects of hygroscopic growth of aerosols or wet deposition. The OBS-PBLH provided a reasonable spatial distribution relative to ERA-PBLH.This indicates that OBS-PBLH has the potential for identifying the variation of PM_(2.5) concentration.展开更多
考虑在函数型解释变量部分观测的情况下,用函数线性模型刻画与标量响应变量的关系.基于函数型主成分分析(Functional Principal Component Analysis,简称FPCA)实现了对缺失部分样本的重构,并通过实证分析,对一组北京市2010-2014年间统...考虑在函数型解释变量部分观测的情况下,用函数线性模型刻画与标量响应变量的关系.基于函数型主成分分析(Functional Principal Component Analysis,简称FPCA)实现了对缺失部分样本的重构,并通过实证分析,对一组北京市2010-2014年间统计的包括部分观测PM2.5数值的气象数据,分析了PM2.5作为部分观测函数型解释变量对标量响应变量平均气温的影响,结果表明了该方法具有处理缺失函数数据的现实意义.展开更多
文摘This study aims to assess and compare levels of particulate matter(PM10 and PM2.5)in urban and industrial areas in Malaysia during haze episodes,which typically occur in the south west monsoon season.The high concentrations of atmospheric particles are mainly due to pollution from neighbouring countries.Daily PM concentrations were analysed for urban and industrial areas including Alor Setar,Tasek,Shah Alam,Klang,Bandaraya Melaka,Larkin,Balok Baru,and Kuala Terengganu in 2018 and 2019.The analysis employed spatiotemporal to examine how PM levels were distributed.The data summary revealed that PM levels in all study areas were right-skewed,indicating the occurrence of high particulate events.Significant peaks in PM concentrations during haze events were consistently observed between June and October,encompassing the south west monsoon and inter-monsoon periods.The study on acute respiratory illnesses primarily focused on Selangor.Analysis revealed that Klang had the highest mean number of inpatient cases for acute exacerbation of bronchial asthma(AEBA)and acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with values of 260.500 and 185.170,respectively.Similarly,for outpatient cases of AEBA and AECOPD,Klang had the highest average values of 41.67 and 14.00,respectively.Shah Alam and Sungai Buloh did not show a significant increase in cases during periods of biomass burning.The statistical analysis concluded that higher concentrations of PM were associated with increased hospital admissions,particularly from June to September,as shown in the bar diagram.Haze episodes were associated with more healthcare utilization due to haze-related respiratory illnesses,seen in higher inpatient and outpatient visits(p<0.05).However,seasonal variability had minimal impact on healthcare utilization.These findings offer a comprehensive assessment of PM levels during historic haze episodes,providing valuable insights for authorities to develop policies and guidelines for effective monitoring and mitigation of the negative impacts of haze events.
基金The study is fully supported by the National Natural Science Foundation of China(61873283)the Changsha Science&Technology Project(KQ1707017)the Innovation Driven Project of the Central South University(2019CX005).
文摘Particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM2.5)concentration forecasting is desirable for air pollution early warning.This study proposes an improved hybrid model,named multi-feature clustering decomposition(MCD)–echo state network(ESN)–particle swarm optimization(PSO),for multi-step PM2.5 concentration forecasting.The proposed model includes decomposition and optimized forecasting components.In the decomposition component,an MCD method consisting of rough sets attribute reduction(RSAR),k-means clustering(KC),and the empirical wavelet transform(EWT)is proposed for feature selection and data classification.Within the MCD,the RSAR algorithm is adopted to select significant air pollutant variables,which are then clustered by the KC algorithm.The clustered results of the PM2.5 concentration series are decomposed into several sublayers by the EWT algorithm.In the optimized forecasting component,an ESN-based predictor is built for each decomposed sublayer to complete the multi-step forecasting computation.The PSO algorithm is utilized to optimize the initial parameters of the ESN-based predictor.Real PM2.5 concentration data from four cities located in different zones in China are utilized to verify the effectiveness of the proposed model.The experimental results indicate that the proposed forecasting model is suitable for the multi-step high-precision forecasting of PM2.5 concentrations and has better performance than the benchmark models.
基金National Key R&D Program Pilot Projects of China(2016YFC203300)Major Program of National Natural Science Foundation of China(91644223)+2 种基金Special Funding Project for Public Industry Research and Development of Ministry of Environmental Protection(201509001)National Natural Science Foundation of China(9133700041575008)
文摘The planetary boundary layer height(PBLH) was calculated using the radiosonde sounding data, including120 L-band operational sites and 8 GPS sites in China. The diurnal and seasonal variations of PBLH were analyzed using radiosonde sounding(OBS-PBLH) and ERA data(ERA-PBLH). Based on comparison and error analyses, we discussed the main error sources in these data. The frequency distributions of PBLH variations under different regimes(the convective boundary layer, the neutral residual layer, and the stable boundary layer) can be well fitted by a Gamma distribution and the shape parameter k and scale parameter s values were obtained for different regions of China. The variation characteristics of PBLH were found in summer under these three regimes for different regions. The relationships between PBLH and PM_(2.5) concentration generally follow a power law under very low or no precipitation conditions in the region of Beijing, Tianjin and Hebei in summer. The results usually deviated from this power distribution only under strong precipitation or high relative humidity conditions because of the effects of hygroscopic growth of aerosols or wet deposition. The OBS-PBLH provided a reasonable spatial distribution relative to ERA-PBLH.This indicates that OBS-PBLH has the potential for identifying the variation of PM_(2.5) concentration.
文摘考虑在函数型解释变量部分观测的情况下,用函数线性模型刻画与标量响应变量的关系.基于函数型主成分分析(Functional Principal Component Analysis,简称FPCA)实现了对缺失部分样本的重构,并通过实证分析,对一组北京市2010-2014年间统计的包括部分观测PM2.5数值的气象数据,分析了PM2.5作为部分观测函数型解释变量对标量响应变量平均气温的影响,结果表明了该方法具有处理缺失函数数据的现实意义.