考虑在函数型解释变量部分观测的情况下,用函数线性模型刻画与标量响应变量的关系.基于函数型主成分分析(Functional Principal Component Analysis,简称FPCA)实现了对缺失部分样本的重构,并通过实证分析,对一组北京市2010-2014年间统...考虑在函数型解释变量部分观测的情况下,用函数线性模型刻画与标量响应变量的关系.基于函数型主成分分析(Functional Principal Component Analysis,简称FPCA)实现了对缺失部分样本的重构,并通过实证分析,对一组北京市2010-2014年间统计的包括部分观测PM2.5数值的气象数据,分析了PM2.5作为部分观测函数型解释变量对标量响应变量平均气温的影响,结果表明了该方法具有处理缺失函数数据的现实意义.展开更多
文摘考虑在函数型解释变量部分观测的情况下,用函数线性模型刻画与标量响应变量的关系.基于函数型主成分分析(Functional Principal Component Analysis,简称FPCA)实现了对缺失部分样本的重构,并通过实证分析,对一组北京市2010-2014年间统计的包括部分观测PM2.5数值的气象数据,分析了PM2.5作为部分观测函数型解释变量对标量响应变量平均气温的影响,结果表明了该方法具有处理缺失函数数据的现实意义.