期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一种最优多模式集成方法在我国重污染区域PM2.5浓度预报中的应用 被引量:10
1
作者 张天航 王继康 +5 位作者 张恒德 张碧辉 吕梦瑶 江琪 迟茜元 栾天 《环境工程技术学报》 CAS 2019年第5期520-530,共11页
为了提高我国重污染区域PM2.5浓度预报准确率,基于4套国家级以及区域环境气象业务中心发展和维护的空气质量数值预报模式,通过均值集成、权重集成、多元线性回归集成和BP-ANNs集成分别建立集成预报,在实时预报效果评估基础上,建立了最... 为了提高我国重污染区域PM2.5浓度预报准确率,基于4套国家级以及区域环境气象业务中心发展和维护的空气质量数值预报模式,通过均值集成、权重集成、多元线性回归集成和BP-ANNs集成分别建立集成预报,在实时预报效果评估基础上,建立了最优多模式集成预报。对2015—2016年预报效果进行评估,结果表明:相对于单个空气质量数值预报模式,均值和权重集成对预报偏差的改进幅度有限,但多元线性回归、BP-ANNs和最优集成能较大幅度降低预报偏差;最优集成预报与观测值间的归一化平均偏差(NMB)和均方根误差(RMSE)分别为-10%~10%和10~70μg/m^3,且在更多的站点表现出强相关性,但依然低估了高污染等级的PM2.5浓度。对2018年2月25日—3月4日京津冀地区污染过程进行评估,结果表明:最优集成能较好预报出该过程中PM2.5浓度的变化趋势和量级;在北京、石家庄和郑州3个代表城市中,预报和观测值间的NMB和相关系数(R)分别为-26%^-4%和0.49~0.77;最优集成对轻度污染及中度污染的TS评分为0.39~0.73,重度污染及以上TS评分为0.13~0.30,能为预报员提供客观参考,但对污染峰值的预报能力还需进一步改进。 展开更多
关键词 BP-ANNs 多模式集成 最优集成 pm2.5浓度预报
下载PDF
深度学习方法在上海市PM2.5浓度预报中的应用 被引量:10
2
作者 马井会 曹钰 +2 位作者 余钟奇 瞿元昊 许建明 《中国环境科学》 EI CAS CSCD 北大核心 2020年第2期530-538,共9页
为提升PM2.5浓度预报能力,尤其是对PM2.5重污染的预报能力,以中尺度气象-化学耦合模式系统(WRF-Chem)为基础,结合中尺度WRF气象预报数据、地面及高空气象观测数据、PM2.5浓度观测数据,基于人工智能深度学习序列到序列的算法建立了上海市... 为提升PM2.5浓度预报能力,尤其是对PM2.5重污染的预报能力,以中尺度气象-化学耦合模式系统(WRF-Chem)为基础,结合中尺度WRF气象预报数据、地面及高空气象观测数据、PM2.5浓度观测数据,基于人工智能深度学习序列到序列的算法建立了上海市PM2.5统计预报模型.结果表明,人工智能深度学习算法(Seq2seq)明显修正了WRF-Chem模式由于模型非客观性造成的偏差,提高了上海市PM2.5浓度的预报能力;该算法优化和修正了WRF-Chem模式结果,并通过检验发现可以使PM2.5浓度预报值与实况值间的相关系数由0.51上升至0.79,均方根误差由25.9μg/m3下降至15.01μg/m3.而单独使用套索法(Lasso)线性回归算法对WRF-Chem模式优化效果不理想.基于Seq2seq的PM2.5浓度预报修正模型能够有效提升预报精度. 展开更多
关键词 Sequence to sequence模型 pm2.5浓度预报 WRF-Chem 上海市
下载PDF
气象预报模式参数化方案对重污染过程PM2.5浓度预报效果的影响 被引量:7
3
作者 韩丽娜 唐晓 +7 位作者 陈科艺 周慧 孔磊 张佩文 黄树元 吴倩 曹凯 王自发 《气候与环境研究》 CSCD 北大核心 2021年第3期312-322,共11页
针对北京市2016年12月16~21日的重污染过程,基于嵌套网格空气质量模式预报系统(NAQPMS),面向气象驱动模式WRF中7类物理过程的参数化方案,通过单扰动和组合扰动方式构建了51组不同的WRF模式运行配置,对比分析不同方案配置下NAQPMS对这次... 针对北京市2016年12月16~21日的重污染过程,基于嵌套网格空气质量模式预报系统(NAQPMS),面向气象驱动模式WRF中7类物理过程的参数化方案,通过单扰动和组合扰动方式构建了51组不同的WRF模式运行配置,对比分析不同方案配置下NAQPMS对这次重污染过程细颗粒物(PM2.5)浓度预报的性能。结果表明:在重污染时段,组合扰动优化方案在城中心站点和城郊站点的PM2.5浓度预报精度都显著高于基准参数化方案配置下的预报结果,特别是能显著改进基准方案下模式对重污染过程结束时间的预报误差问题,显著减小12月21日存在的预报偏差。从统计指标来看,城中心站点在组合扰动优化方案下预报相关性最高,相关系数在0.7以上;从预报均方根误差来看,组合扰动优化方案误差最小。城郊站点同样是在组合扰动优化方案下预报相关性最高,与观测之间的偏差更小。从污染物与气象要素的空间分布来看,组合扰动优化方案比基准方案能更好再现污染时段的气象要素变化,预报的风速更小、相对湿度更高,从而有利于12月21日北京高浓度PM2.5的维持和累积。本文结果表明气象预报模式参数化方案不确定性是重污染预报的关键不确定性来源,选择合适的参数化方案可以减小重污染期间气象要素的模拟偏差,并可进一步提高重污染时段的PM2.5浓度预报精度。 展开更多
关键词 细颗粒物(pm2.5)浓度预报 气象参数化方案优选 大气重污染过程 北京
下载PDF
合肥市冬季PM2.5统计预报方法初试与比较研究 被引量:3
4
作者 朱苹 王成刚 +2 位作者 冯妍 张红 苏筱倩 《环境科学与技术》 CAS CSCD 北大核心 2019年第12期81-89,共9页
利用合肥市2015-2018年冬季PM2.5观测资料和FNL再分析资料,文章综合考虑地面及边界层高度范围内各气象要素作用,针对目前空气质量统计预报方法的不足,根据阈值分析筛选预报因子,同时将风向数据转化为对应的八方位上历史污染物浓度均值输... 利用合肥市2015-2018年冬季PM2.5观测资料和FNL再分析资料,文章综合考虑地面及边界层高度范围内各气象要素作用,针对目前空气质量统计预报方法的不足,根据阈值分析筛选预报因子,同时将风向数据转化为对应的八方位上历史污染物浓度均值输入,最后结合BP神经网络对PM2.5浓度进行逐6 h预报。结果表明,所建模型(TA-BP方案)中对PM2.5预测值与观测值的相关系数(R)高达0.85,平均绝对误差(MAE)为21.31μg/m^3,均方根误差(RMSE)为28.20μg/m^3。阈值分析能够有效筛选与污染物浓度呈非线性关系的气象预报因子和高空预报因子。较BP模型,TA-BP模型的R和一致性指数(IA)分别提升14.12%和8.33%,MAE、平均相对误差(MAPE)和RMSE分别降低22.87%、17.86%和23.78%。同时,与其他不同输入变量模型及线性模型对比结果表明:仅考虑气象因子作用的MTA-BP方案限制了预报模型的准确性,以临近6 h的PM2.5浓度代替各气象因子作用的PTA-BP方案能够实现较好的预报效果,但滞后性严重。另外,综合考虑气象因子与污染因子作用的非线性TA-BP模型要优于线性MSR模型。 展开更多
关键词 BP神经网络 pm2.5浓度预报 阈值分析 统计模型
下载PDF
基于支持向量回归的PM_(2.5)浓度实时预报 被引量:18
5
作者 朱亚杰 李琦 +2 位作者 侯俊雄 冯逍 范竣翔 《测绘科学》 CSCD 北大核心 2016年第1期12-17,22,共7页
为了研究适合于我国当前重污染天气的实时空气质量预报模型,论文利用支持向量回归方法对北京市地面空气质量监测数据和气象数据进行分析,构建了基于支持向量回归的PM2.5浓度实时预报模型。实验表明,该方法能够对未来6日内的日均PM2.5浓... 为了研究适合于我国当前重污染天气的实时空气质量预报模型,论文利用支持向量回归方法对北京市地面空气质量监测数据和气象数据进行分析,构建了基于支持向量回归的PM2.5浓度实时预报模型。实验表明,该方法能够对未来6日内的日均PM2.5浓度以及未来0~72h内的小时级PM2.5浓度进行预报,且模型训练过程和预报过程都耗时很短,适用于建立PM2.5浓度实时预报系统。 展开更多
关键词 支持向量回归 空气质量 pm2.5浓度预报
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部