Northeast China experiences severe atmospheric pollution, with an increasing occurrence of heavy haze episodes. However, the underlying forces driving haze formation during different seasons are poorly understood. In ...Northeast China experiences severe atmospheric pollution, with an increasing occurrence of heavy haze episodes. However, the underlying forces driving haze formation during different seasons are poorly understood. In this study, we explored the spatio-temporal characteristics and causes of haze events in Northeast China by combining a range of data sources(i.e., ground monitoring, satellite-based products, and meteorological products). It was found that the ‘Shenyang-Changchun-Harbin(SCH)'city belt was the most polluted area in the region on an annual scale. The spatial distribution of air quality index(AQI) values had a clear seasonality, with the worst pollution occurring in winter, an approximately oval-shaped polluted area around western Jilin Province in spring, and the best air quality occurring in summer and most of the autumn. The three periods that typically experienced intense haze events were Period I from mid-October to mid-November(i.e., late autumn and early winter), Period II from late-December to February(i.e., the coldest time in winter), and Period III from April to mid-May(i.e., spring). During Period I, strong PM_(2.5) emissions from seasonal crop residue burning and coal burning for winter heating were the dominant reasons for the occurrence of extreme haze events(AQI > 300). Period II had frequent heavy haze events(200 < AQI < 300) in the coldest months of January and February, which were due to high PM_(2.5) emissions from coal burning and vehicle fuel consumption, a lower atmospheric boundary layer, and stagnant atmospheric conditions. Haze events in Period III, with high PM_(10) concentrations, were primarily caused by the regional transportation of windblown dust from degraded grassland in central Inner Mongolia and bare soil in western Jilin Province. Local agricultural tilling could also release PM_(10) and enhance the levels of windblown dust from tilled soil. Better control of coal burning, fuel consumption, and crop residue burning in winter and autumn is urgently needed to address the haze problem in Northeast China.展开更多
Rapid industrialization and economic development have led to serious pollution in the form of fine particulate matter(PM2.5,particulate matter with a diameter of less than 2.5 μm). In China, PM2.5 has been one of the...Rapid industrialization and economic development have led to serious pollution in the form of fine particulate matter(PM2.5,particulate matter with a diameter of less than 2.5 μm). In China, PM2.5 has been one of the most debated topics in councils of government and issues of public concern. Terahertz(THz) radiation was employed to measure the PM2.5 in the atmosphere from September 2014 to April 2015 in Beijing. Comparison of the PM2.5 level from the website with THz absorbance revealed a significant phenomenon: THz radiation can be used to monitor PM2.5 in the atmosphere. During Asia-Pacific Economic Cooperation(APEC) 2014, "APEC Blue" was also recorded in a THz system. The relationship between absorbance and PM2.5 demonstrates that THz radiation is an effective selection for air pollution grading. Based on the absorbance spectra, the elemental compositions were studied by two-dimensional correlation spectroscopy(2 DCOS) in conjunction with X-ray fluorescence.Several single absorption peaks were revealed and caused by sulphate from coal combustion, vehicle exhaust emissions and secondary reactions. Furthermore, mathematical algorithms, such as the BPANN and SVM, can process the THz absorbance data and greatly improve the precision of the estimation of PM2.5 mass. Our results suggest that THz spectroscopy can not only reveal the component information for pollution source determination, but quantitatively monitor the PM2.5 content for pollution level evaluation. Therefore, the use of THz radiation is a new method for future air pollution monitoring and grading systems.展开更多
基金Under the auspices of National Key R&D Program of China(No.2017YFC0212303,2017YFC0212304,2017YFC0212301)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(No.QYZDB-SSW-DQC045)+1 种基金Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2017275)National Natural Science Foundation of China(No.41775116,41771071,41575129)
文摘Northeast China experiences severe atmospheric pollution, with an increasing occurrence of heavy haze episodes. However, the underlying forces driving haze formation during different seasons are poorly understood. In this study, we explored the spatio-temporal characteristics and causes of haze events in Northeast China by combining a range of data sources(i.e., ground monitoring, satellite-based products, and meteorological products). It was found that the ‘Shenyang-Changchun-Harbin(SCH)'city belt was the most polluted area in the region on an annual scale. The spatial distribution of air quality index(AQI) values had a clear seasonality, with the worst pollution occurring in winter, an approximately oval-shaped polluted area around western Jilin Province in spring, and the best air quality occurring in summer and most of the autumn. The three periods that typically experienced intense haze events were Period I from mid-October to mid-November(i.e., late autumn and early winter), Period II from late-December to February(i.e., the coldest time in winter), and Period III from April to mid-May(i.e., spring). During Period I, strong PM_(2.5) emissions from seasonal crop residue burning and coal burning for winter heating were the dominant reasons for the occurrence of extreme haze events(AQI > 300). Period II had frequent heavy haze events(200 < AQI < 300) in the coldest months of January and February, which were due to high PM_(2.5) emissions from coal burning and vehicle fuel consumption, a lower atmospheric boundary layer, and stagnant atmospheric conditions. Haze events in Period III, with high PM_(10) concentrations, were primarily caused by the regional transportation of windblown dust from degraded grassland in central Inner Mongolia and bare soil in western Jilin Province. Local agricultural tilling could also release PM_(10) and enhance the levels of windblown dust from tilled soil. Better control of coal burning, fuel consumption, and crop residue burning in winter and autumn is urgently needed to address the haze problem in Northeast China.
基金supported by the National Natural Science Foundation of China(Grant No.11574401)the Science Foundation of China University of Petroleum,Beijing(Grant Nos.2462017YJRC029,and yjs2017019)the Beijing Natural Science Foundation(Grant No.1184016)
文摘Rapid industrialization and economic development have led to serious pollution in the form of fine particulate matter(PM2.5,particulate matter with a diameter of less than 2.5 μm). In China, PM2.5 has been one of the most debated topics in councils of government and issues of public concern. Terahertz(THz) radiation was employed to measure the PM2.5 in the atmosphere from September 2014 to April 2015 in Beijing. Comparison of the PM2.5 level from the website with THz absorbance revealed a significant phenomenon: THz radiation can be used to monitor PM2.5 in the atmosphere. During Asia-Pacific Economic Cooperation(APEC) 2014, "APEC Blue" was also recorded in a THz system. The relationship between absorbance and PM2.5 demonstrates that THz radiation is an effective selection for air pollution grading. Based on the absorbance spectra, the elemental compositions were studied by two-dimensional correlation spectroscopy(2 DCOS) in conjunction with X-ray fluorescence.Several single absorption peaks were revealed and caused by sulphate from coal combustion, vehicle exhaust emissions and secondary reactions. Furthermore, mathematical algorithms, such as the BPANN and SVM, can process the THz absorbance data and greatly improve the precision of the estimation of PM2.5 mass. Our results suggest that THz spectroscopy can not only reveal the component information for pollution source determination, but quantitatively monitor the PM2.5 content for pollution level evaluation. Therefore, the use of THz radiation is a new method for future air pollution monitoring and grading systems.