Thirty-six daily time interval PM2.5 samples were collected in different seasonal dates in urban Shanghai, and the concentrations of four anions (Cl- , NO3-, SO4^2-, C2O4^2-) and five cations (NH+, Na+, K+, Ca2...Thirty-six daily time interval PM2.5 samples were collected in different seasonal dates in urban Shanghai, and the concentrations of four anions (Cl- , NO3-, SO4^2-, C2O4^2-) and five cations (NH+, Na+, K+, Ca2+, Mg2+) were analyzed with ion chromatography. Sulfate, nitrate and ammonium were found to be the dominant species, accounting for about 80% of the total ions. The daily nitrate to sulfate mass ratio ranged from 0.31 to 0.82, indicating that coal combustion was still the main pollution source in Shanghai. The equivalent ratio of ammonium to stun of nitrate and sulfate showed fixed diurnal variation pattern in all the sampling days with higher values in the nighttime, suggesting that fine particles in the night were more neutralized. The oxalate to sulfate ratio was lower in the winter sampling days than that in hotter summer and autumn sampling days. Oxalate was significantly correlated with sulfate in winter sampling days, but not in the summer and autumn, suggesting that the formation mechanism of oxalate and sulfate was similar in winter, however different in hot days.展开更多
To further understand the variations of water-soluble ions in PM2.5 in Beijing,the authors observed their concentrations continuously and in high temporal resolution by the system for rapid collection of fine particle...To further understand the variations of water-soluble ions in PM2.5 in Beijing,the authors observed their concentrations continuously and in high temporal resolution by the system for rapid collection of fine particles and ion chromatography(RCFP-IC) during 12–18 July 2010.These results combined with those of earlier backward trajectory research are used analyzed to determine the causes of concentration changes in water-soluble ions under the influences of two kinds of air masses in summer.The results indicate that concentrations of NO3-,SO42-,and NH4+ were influenced strongly by the continental air mass than by the marine air mass.Cl- and Na+ were not changed significantly.Because the sources of K+,Mg2+,and Ca2+ are mainly concentrated on land,their concentration levels were slightly higher under the control of continental air mass than that of the marine air mass.Variations of NO2- during the observation differed from those of other ions;its concentration was significantly higher under the influence of marine air mass.Moreover,the authors obtain the diurnal variations of eight water-soluble inorganic ions including NH4+,K+,Mg2+,Ca2+,Cl-,NO2-,NO3-,and SO42-.Diurnal variations of NH4+,NO3-,and Cl- showed single peak,which appeared before noon,while SO42- showed two peaks that appeared during rush hours.Those of Mg2+,Ca2+,and K+ showed single peak that appeared in the afternoon.That of NO2- showed with a peak appearing at sunrise and a valley appearing at sunset.展开更多
The chemical characteristics(water-soluble ions and carbonaceous species) of PM2.5 in Guangzhou were measured during a typical haze episode.Most of the chemical species in PM2.5 showed significant difference between...The chemical characteristics(water-soluble ions and carbonaceous species) of PM2.5 in Guangzhou were measured during a typical haze episode.Most of the chemical species in PM2.5 showed significant difference between normal and haze days.The highest contributors to PM2.5 were organic carbon(OC),nitrate,and sulfate in haze days and were OC,sulfate,and elemental carbon(EC) in normal days.The concentrations of secondary species such as,NO3^-,SO4^2-,and NH4^+ in haze days were 6.5,3.9,and 5.3 times higher than those in normal days,respectively,while primary species(EC,Ca^2+,K^+) show similar increase from normal to haze days by a factor about 2.2-2.4.OC/EC ratio ranged from 2.8 to 6.2 with an average of 4.7 and the estimation on a minimum OC/EC ratio showed that SOC(secondary organic carbon) accounted more than 36.6% for the total organic carbon in haze days.The significantly increase in the secondary species(SOC,NO3^-,SO4^2-,and NH4^+),especially in NO3^-,caused the worst air quality in this region.Simultaneously,the result illustrated that the serious air pollution in haze episodes was strongly correlated with the meteorological conditions.During the sampling periods,air pollution and visibility had a good relationship with the air mass transport distance;the shorter air masses transport distance,the worse air quality and visibility in Guangzhou,indicating the strong domination of local sources contributing to haze formation.High concentration of the secondary aerosol in haze episodes was likely due to the higher oxidation rates of sulfur and nitrogen species.展开更多
Recently, air quality has significantly improved in developed country, but that issue is of concern in emerging megacity in developing country.In this study, aerosols and their precursor gas were collected by NILU fil...Recently, air quality has significantly improved in developed country, but that issue is of concern in emerging megacity in developing country.In this study, aerosols and their precursor gas were collected by NILU filter pack at two distinct urban sites during the winter and summer in Osaka, Japan and dry and rainy seasons in Ho Chi Minh City(HCMC),Vietnam.The aims are to investigate the contribution of water-soluble inorganic ions(WSIIs) to PM2.5, thermodynamic characterization and possible formation pathway of secondary inorganic aerosol(SIA).The PM2.5 concentration in Osaka(15.8 μg/m^3) is lower than that in HCMC(23.0 μg/m^3), but the concentration of WSIIs in Osaka(9.0 μg/m^3) is two times higher than that in HCMC(4.1 μg/m^3).Moreover, SIA including NH4^+, NO3^-and SO4^2-are major components in WSIIs accounting for 90% and 76%(in molar) in Osaka and HCMC,respectively.Thermodynamic models were used to understand the thermodynamic characterization of urban aerosols.Overall, statistical analysis results indicate that very good agreement(R2> 0.8) was found for all species, except for nitrate aerosol in HCMC.We found that when the crustal species present at high amount, those compositions should be included in model calculation(i.e.in the HCMC situation).Finally, we analyzed the characteristics of NH4^+– NO3^-– SO4^2-system.A possible pathway to produce fine nitrate aerosol in Osaka is via the homogeneous reaction between NH3 and HNO3, while nonvolatile nitrate aerosols can be formed by the heterogeneous reactions in HCMC.展开更多
Water-soluble organic matter(WSOM) represents a critical fraction of fine particles(PM2.5)in the air, but its changing behaviors and formation mechanisms are not well understood yet, partly due to the lack of fast...Water-soluble organic matter(WSOM) represents a critical fraction of fine particles(PM2.5)in the air, but its changing behaviors and formation mechanisms are not well understood yet, partly due to the lack of fast techniques for the ambient measurements. In this study,a novel system for the on-line measurement of water-soluble components in PM2.5, the particle-into-liquid sampler(PILS)–Nebulizer–aerosol chemical speciation monitor(ACSM), was developed by combining a PILS, a nebulizer, and an ACSM. High time resolution concentrations of WSOM, sulfate, nitrate, ammonium, and chloride, as well as mass spectra, can be obtained with satisfied quality control results. The system was firstly applied in China for field measurement of WSOM. The mass spectrum of WSOM was found to resemble that of oxygenated organic aerosol, and WSOM agreed well with secondary inorganic ions. All evidence collected in the field campaign demonstrated that WSOM could be a good surrogate of secondary organic aerosol(SOA). The PILS–Nebulizer–ACSM system can thus be a useful tool for intensive study of WSOM and SOA in PM2.5.展开更多
The object of this study was to investigate the correlation of visibility with chemical composition of PM2.5 in Guangzhou. In April 2007, 28 PM2.5 samples were collected daily at the monitoring station of the South Ch...The object of this study was to investigate the correlation of visibility with chemical composition of PM2.5 in Guangzhou. In April 2007, 28 PM2.5 samples were collected daily at the monitoring station of the South China Institute of Environmental Sciences (SCIES), in urban Guangzhou. Water-soluble ionic species (CI^-, NO3^-, SO4^2-, NH4^+, K^+, Na^+, Ca^2+, and Mg^2+) and carbonaceous contents (OC and EC) of the PM2.5 samples were determined to characterize their impact on visibility impairment. The results showed that sulfate was the dominant species that affected both light scattering and visibility. The average percentage contributions of the visibility-degrading species to light scattering coefficient were 40% for sulfate, 16% for nitrate, 22% for organics, and 22% for elemental carbon. Because of its foremost effect on visibility, sulfate reduction in PM2.5 would effectively improve the visibility of Guangzhou.展开更多
To identify and apportion the sources of the ambient PM2.5 in the urban area of Hangzhou, China, PM2.s samples were collected at three sites in the city from April 2004 to March 2005. Water-soluble ions, metal element...To identify and apportion the sources of the ambient PM2.5 in the urban area of Hangzhou, China, PM2.s samples were collected at three sites in the city from April 2004 to March 2005. Water-soluble ions, metal elements, and total carbon (TC) in PM2.s samples were analyzed. The results indicated that the 24-h mean concentrations of PM2.5 ranged from 17.1 to 267.0 μg/m^3, with an annual average value of 108.2 μg/m^3. Moreover, the seasonal mean values for PM2.5 in spring, summer, autumn, and winter were 116, 73.1, 114.2, and 136.0μg/m^3, respectively. According to the Chinese ambient quality standard, at least 70% of the monitoring data exceeded the limit value. The total contribution of water-soluble ions, including F^-, CI^-, NO3^-, SO4^2- , NH4^+, K^+, and Na^+, to PM2.5 mass varied from 32.3% to 36.7%. SO4^2- , NO3^-, and NH4^+ were the main constituents of the ions, with contributions to PM2.5 varying from 14.1% to 14.7%, 6.0% to 7.89;, and 6.4% to 7.7%, respectively. In addition, the annual mean mass fraction of TC in PM2.5 was 27.8%. The annual average total contribution of the group of elements of Zn, Pb, Cu, Mn, Cr, Ni, Se, Mo, Cd, Sb, and Ag to the aerosol was in the range of 1.7-2.0%. Furthermore, positive matrix factorization was applied to analyze the PM2.5 data collected from the central area, and five factors were identified. The factor contributions to PM2.5 mass were 12.8%, 31.9%, 10.1%, 17.2%, and 27.9%, respectively. Iron/steel manufacturing and secondary aerosol were the main sources for the fine particles. These findings may have significance for controlling the atmospheric contamination in the city.展开更多
PM2.5 samples for 24h were collected during winter in Tianjin, China. The ambient mass concentration and chemical composition of the PM2.5 were determined. Ionic species were analyzed by ion chromatography, while carb...PM2.5 samples for 24h were collected during winter in Tianjin, China. The ambient mass concentration and chemical composition of the PM2.5 were determined. Ionic species were analyzed by ion chromatography, while carbonaceous species were determined with the IMPROVE thermal optical reflectance (TOR) method, and inorganic elements were measured by inductively coupled plasma-atomic emission spectrometer. The daily PM2.5 mass concentrations ranged from 48.2 to 319.2 μg/m^3 with an arithmetic average of 144.6 μg/m^3. The elevated PM2.5 in winter was mostly attributed to combustion sources such as vehicle exhaust, heating, cooking and industrial emissions, low wind speeds and high relative humidity (RH), which were favorable for pollutant accumulation and formation of secondary pollutants. By chemical mass balance, it was estimated that about 89.1% of the PM2.5 mass concentrations were explained by carbonaceous species, secondary particles, crustal matters, sea salt and trace elements. Organic material was the largest contributor, accounting for about 32.7% of the total PM2.5 mass concentrations. SO4^2-, NO3^-, Cl^- and NH4^+ were four major ions, accounting for 16.6%, 11.5%, 4.7% and 6,0%, respectively, of the total mass of PM2.5.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.20877052)the Shanghai Leading Academic Discipline Project(Grant No.S30109)
文摘Thirty-six daily time interval PM2.5 samples were collected in different seasonal dates in urban Shanghai, and the concentrations of four anions (Cl- , NO3-, SO4^2-, C2O4^2-) and five cations (NH+, Na+, K+, Ca2+, Mg2+) were analyzed with ion chromatography. Sulfate, nitrate and ammonium were found to be the dominant species, accounting for about 80% of the total ions. The daily nitrate to sulfate mass ratio ranged from 0.31 to 0.82, indicating that coal combustion was still the main pollution source in Shanghai. The equivalent ratio of ammonium to stun of nitrate and sulfate showed fixed diurnal variation pattern in all the sampling days with higher values in the nighttime, suggesting that fine particles in the night were more neutralized. The oxalate to sulfate ratio was lower in the winter sampling days than that in hotter summer and autumn sampling days. Oxalate was significantly correlated with sulfate in winter sampling days, but not in the summer and autumn, suggesting that the formation mechanism of oxalate and sulfate was similar in winter, however different in hot days.
基金funded by the National Natural Science Foundation of China (41175107 and 41275139)
文摘To further understand the variations of water-soluble ions in PM2.5 in Beijing,the authors observed their concentrations continuously and in high temporal resolution by the system for rapid collection of fine particles and ion chromatography(RCFP-IC) during 12–18 July 2010.These results combined with those of earlier backward trajectory research are used analyzed to determine the causes of concentration changes in water-soluble ions under the influences of two kinds of air masses in summer.The results indicate that concentrations of NO3-,SO42-,and NH4+ were influenced strongly by the continental air mass than by the marine air mass.Cl- and Na+ were not changed significantly.Because the sources of K+,Mg2+,and Ca2+ are mainly concentrated on land,their concentration levels were slightly higher under the control of continental air mass than that of the marine air mass.Variations of NO2- during the observation differed from those of other ions;its concentration was significantly higher under the influence of marine air mass.Moreover,the authors obtain the diurnal variations of eight water-soluble inorganic ions including NH4+,K+,Mg2+,Ca2+,Cl-,NO2-,NO3-,and SO42-.Diurnal variations of NH4+,NO3-,and Cl- showed single peak,which appeared before noon,while SO42- showed two peaks that appeared during rush hours.Those of Mg2+,Ca2+,and K+ showed single peak that appeared in the afternoon.That of NO2- showed with a peak appearing at sunrise and a valley appearing at sunset.
基金supported by the National Excellent Youth Foundation of China (No. 20625722)the China Postdoctoral Science Foundation (No. 20080430396)
文摘The chemical characteristics(water-soluble ions and carbonaceous species) of PM2.5 in Guangzhou were measured during a typical haze episode.Most of the chemical species in PM2.5 showed significant difference between normal and haze days.The highest contributors to PM2.5 were organic carbon(OC),nitrate,and sulfate in haze days and were OC,sulfate,and elemental carbon(EC) in normal days.The concentrations of secondary species such as,NO3^-,SO4^2-,and NH4^+ in haze days were 6.5,3.9,and 5.3 times higher than those in normal days,respectively,while primary species(EC,Ca^2+,K^+) show similar increase from normal to haze days by a factor about 2.2-2.4.OC/EC ratio ranged from 2.8 to 6.2 with an average of 4.7 and the estimation on a minimum OC/EC ratio showed that SOC(secondary organic carbon) accounted more than 36.6% for the total organic carbon in haze days.The significantly increase in the secondary species(SOC,NO3^-,SO4^2-,and NH4^+),especially in NO3^-,caused the worst air quality in this region.Simultaneously,the result illustrated that the serious air pollution in haze episodes was strongly correlated with the meteorological conditions.During the sampling periods,air pollution and visibility had a good relationship with the air mass transport distance;the shorter air masses transport distance,the worse air quality and visibility in Guangzhou,indicating the strong domination of local sources contributing to haze formation.High concentration of the secondary aerosol in haze episodes was likely due to the higher oxidation rates of sulfur and nitrogen species.
基金partially supported by the Japan Science and Technology Agency, the Japan International Cooperation Agency, and the Science and Technology Research Partnership for Sustainable Development (SATREPS project entitled “Multi-Beneficial Measure for Mitigation of Climate Change in Vietnam and Indochina Countries by Development of Biomass Energy”).
文摘Recently, air quality has significantly improved in developed country, but that issue is of concern in emerging megacity in developing country.In this study, aerosols and their precursor gas were collected by NILU filter pack at two distinct urban sites during the winter and summer in Osaka, Japan and dry and rainy seasons in Ho Chi Minh City(HCMC),Vietnam.The aims are to investigate the contribution of water-soluble inorganic ions(WSIIs) to PM2.5, thermodynamic characterization and possible formation pathway of secondary inorganic aerosol(SIA).The PM2.5 concentration in Osaka(15.8 μg/m^3) is lower than that in HCMC(23.0 μg/m^3), but the concentration of WSIIs in Osaka(9.0 μg/m^3) is two times higher than that in HCMC(4.1 μg/m^3).Moreover, SIA including NH4^+, NO3^-and SO4^2-are major components in WSIIs accounting for 90% and 76%(in molar) in Osaka and HCMC,respectively.Thermodynamic models were used to understand the thermodynamic characterization of urban aerosols.Overall, statistical analysis results indicate that very good agreement(R2> 0.8) was found for all species, except for nitrate aerosol in HCMC.We found that when the crustal species present at high amount, those compositions should be included in model calculation(i.e.in the HCMC situation).Finally, we analyzed the characteristics of NH4^+– NO3^-– SO4^2-system.A possible pathway to produce fine nitrate aerosol in Osaka is via the homogeneous reaction between NH3 and HNO3, while nonvolatile nitrate aerosols can be formed by the heterogeneous reactions in HCMC.
基金supported by the National Natural Science Foundation of China(Nos.U1301234,21277003)the Ministry of Science and Technology of China(No.2014BAC21B03)the Science and Technology Plan of Shenzhen Municipality
文摘Water-soluble organic matter(WSOM) represents a critical fraction of fine particles(PM2.5)in the air, but its changing behaviors and formation mechanisms are not well understood yet, partly due to the lack of fast techniques for the ambient measurements. In this study,a novel system for the on-line measurement of water-soluble components in PM2.5, the particle-into-liquid sampler(PILS)–Nebulizer–aerosol chemical speciation monitor(ACSM), was developed by combining a PILS, a nebulizer, and an ACSM. High time resolution concentrations of WSOM, sulfate, nitrate, ammonium, and chloride, as well as mass spectra, can be obtained with satisfied quality control results. The system was firstly applied in China for field measurement of WSOM. The mass spectrum of WSOM was found to resemble that of oxygenated organic aerosol, and WSOM agreed well with secondary inorganic ions. All evidence collected in the field campaign demonstrated that WSOM could be a good surrogate of secondary organic aerosol(SOA). The PILS–Nebulizer–ACSM system can thus be a useful tool for intensive study of WSOM and SOA in PM2.5.
基金the South China Base of National Environmental Innovation fund (Contract No.ZX20071201)
文摘The object of this study was to investigate the correlation of visibility with chemical composition of PM2.5 in Guangzhou. In April 2007, 28 PM2.5 samples were collected daily at the monitoring station of the South China Institute of Environmental Sciences (SCIES), in urban Guangzhou. Water-soluble ionic species (CI^-, NO3^-, SO4^2-, NH4^+, K^+, Na^+, Ca^2+, and Mg^2+) and carbonaceous contents (OC and EC) of the PM2.5 samples were determined to characterize their impact on visibility impairment. The results showed that sulfate was the dominant species that affected both light scattering and visibility. The average percentage contributions of the visibility-degrading species to light scattering coefficient were 40% for sulfate, 16% for nitrate, 22% for organics, and 22% for elemental carbon. Because of its foremost effect on visibility, sulfate reduction in PM2.5 would effectively improve the visibility of Guangzhou.
基金financially supported by the National Natural Science Foundation of China(41073019)
文摘To identify and apportion the sources of the ambient PM2.5 in the urban area of Hangzhou, China, PM2.s samples were collected at three sites in the city from April 2004 to March 2005. Water-soluble ions, metal elements, and total carbon (TC) in PM2.s samples were analyzed. The results indicated that the 24-h mean concentrations of PM2.5 ranged from 17.1 to 267.0 μg/m^3, with an annual average value of 108.2 μg/m^3. Moreover, the seasonal mean values for PM2.5 in spring, summer, autumn, and winter were 116, 73.1, 114.2, and 136.0μg/m^3, respectively. According to the Chinese ambient quality standard, at least 70% of the monitoring data exceeded the limit value. The total contribution of water-soluble ions, including F^-, CI^-, NO3^-, SO4^2- , NH4^+, K^+, and Na^+, to PM2.5 mass varied from 32.3% to 36.7%. SO4^2- , NO3^-, and NH4^+ were the main constituents of the ions, with contributions to PM2.5 varying from 14.1% to 14.7%, 6.0% to 7.89;, and 6.4% to 7.7%, respectively. In addition, the annual mean mass fraction of TC in PM2.5 was 27.8%. The annual average total contribution of the group of elements of Zn, Pb, Cu, Mn, Cr, Ni, Se, Mo, Cd, Sb, and Ag to the aerosol was in the range of 1.7-2.0%. Furthermore, positive matrix factorization was applied to analyze the PM2.5 data collected from the central area, and five factors were identified. The factor contributions to PM2.5 mass were 12.8%, 31.9%, 10.1%, 17.2%, and 27.9%, respectively. Iron/steel manufacturing and secondary aerosol were the main sources for the fine particles. These findings may have significance for controlling the atmospheric contamination in the city.
基金supported by National Natural Science Foundation of China (Grant No. 20677030)Tianjin Science and Technology Development Commission (Grant No. 06YFSYSF02900)
文摘PM2.5 samples for 24h were collected during winter in Tianjin, China. The ambient mass concentration and chemical composition of the PM2.5 were determined. Ionic species were analyzed by ion chromatography, while carbonaceous species were determined with the IMPROVE thermal optical reflectance (TOR) method, and inorganic elements were measured by inductively coupled plasma-atomic emission spectrometer. The daily PM2.5 mass concentrations ranged from 48.2 to 319.2 μg/m^3 with an arithmetic average of 144.6 μg/m^3. The elevated PM2.5 in winter was mostly attributed to combustion sources such as vehicle exhaust, heating, cooking and industrial emissions, low wind speeds and high relative humidity (RH), which were favorable for pollutant accumulation and formation of secondary pollutants. By chemical mass balance, it was estimated that about 89.1% of the PM2.5 mass concentrations were explained by carbonaceous species, secondary particles, crustal matters, sea salt and trace elements. Organic material was the largest contributor, accounting for about 32.7% of the total PM2.5 mass concentrations. SO4^2-, NO3^-, Cl^- and NH4^+ were four major ions, accounting for 16.6%, 11.5%, 4.7% and 6,0%, respectively, of the total mass of PM2.5.