This paper has designed 2-channel dense wavelength division multiplexing (DWDM) chaotic sys- tem at the frequencies of 193.1 and 193,2THz, respec- tively. The optical chaotic signals were produced by using the semic...This paper has designed 2-channel dense wavelength division multiplexing (DWDM) chaotic sys- tem at the frequencies of 193.1 and 193,2THz, respec- tively. The optical chaotic signals were produced by using the semiconductor laser that is numerically modeled by employing laser rate equations. These two channels were multiplexed and then propagated through single mode optical fiber (SMF) of 80kin length with dispersion compensating fiber of 16 km length. Erbium doped fiber amplifier (EDFA) was used to compensate the power losses in the SMF. In lhis paper, we investigated the effects of polarization mode dispersion (PMD) and nonlinearities especially stimulated Raman scattering (SRS) on 2 channel DWDM chaotic communication system by varying the length of the SMF and value of differential group delay (DGD).展开更多
文摘This paper has designed 2-channel dense wavelength division multiplexing (DWDM) chaotic sys- tem at the frequencies of 193.1 and 193,2THz, respec- tively. The optical chaotic signals were produced by using the semiconductor laser that is numerically modeled by employing laser rate equations. These two channels were multiplexed and then propagated through single mode optical fiber (SMF) of 80kin length with dispersion compensating fiber of 16 km length. Erbium doped fiber amplifier (EDFA) was used to compensate the power losses in the SMF. In lhis paper, we investigated the effects of polarization mode dispersion (PMD) and nonlinearities especially stimulated Raman scattering (SRS) on 2 channel DWDM chaotic communication system by varying the length of the SMF and value of differential group delay (DGD).