This paper aims to find strategic locations for additional Phasor Measurement Units (PMUs) installation while considering resiliency of existing PMU measurement system. A virtual attack agent is modeled based on an op...This paper aims to find strategic locations for additional Phasor Measurement Units (PMUs) installation while considering resiliency of existing PMU measurement system. A virtual attack agent is modeled based on an optimization framework. The virtual attack agent targets to minimize observability of power system by coordinated attack on a subset of critical PMUs. A planner agent is then introduced which analyzes the attack pattern of virtual attack agent. The goal of the planner agent is to mitigate the vulnerability posed by the virtual attack agent by placing additional PMUs at strategic locations. The ensuing problem is formulated as an optimization problem. The proposed framework is applied on 14, 30, 57 and 118 bus test systems, including a large 2383 node western polish test system to demonstrate the feasibility of proposed approach for large systems.展开更多
Phasor measurement units(PMUs)are preferred for installation at weak buses in a power network.Therefore,the weak buses need to be located and the strategic locations of PMUs identified to ensure network observability....Phasor measurement units(PMUs)are preferred for installation at weak buses in a power network.Therefore,the weak buses need to be located and the strategic locations of PMUs identified to ensure network observability.Thus,the primary aim of this work is to identify the placements of the maximum number of PMUs installed at the weak buses in the electrical network.The voltage collapse proximity indicator,line stability index,fast voltage stability index,and a new voltage stability indicator utilizing load flow measurement are used to determine the weak buses.A novel deterministic methodology based on a binary-integer linear programming model is then proposed to determine the optimal locations of PMUs.The effect of a single PMU outage considering the weak buses is also demonstrated.The effectiveness of the developed approach is tested and validated on the standard IEEE 14-,118-,300-,and New England 39-bus systems.The obtained results are also compared to those using different weak bus methodologies.展开更多
Normally, the power system observation is carried out for the optimal PMUs placement with minimum use of unit in the region of the Smart power grid system. By advanced tool, the process of protection and management of...Normally, the power system observation is carried out for the optimal PMUs placement with minimum use of unit in the region of the Smart power grid system. By advanced tool, the process of protection and management of the power system is considered with the measurement of time-synchronized of the voltage and current. In order to have an efficient placement solution for the issue, a novel method is needed with the optimal approach. For complete power network observability of PMU optimal placement a new method is implemented. However, the process of placement and connection of the buses is considered at various places with the same cost of installation. GA based Enhanced Harmony and Binary Search Algorithm (GA-EHBSA) is proposed and utilized with the improvement to have least PMU placement and better optimization approach for finding the optimal location. To evaluate the optimal placement of PMUs the proposed approach is implemented in the standard test systems of IEEE 14-bus, IEEE 24-bus, IEEE 30-bus, IEEE 39-bus and IEEE 57-bus. The simulation results are evaluated and compared with existing algorithm to show the efficient process of optimal PMUs placement with better optimization, minimum cost and redundancy than the existing.展开更多
当前应用于状态估计的量测数据由广域测量系统(wide area measurement system,WAMS)和数据监控及采集系统(supervisory control and data acquisition,SCADA)采集,WAMS向量测量单元(phasor measurement unit,PMU)的优化配置问题成为研...当前应用于状态估计的量测数据由广域测量系统(wide area measurement system,WAMS)和数据监控及采集系统(supervisory control and data acquisition,SCADA)采集,WAMS向量测量单元(phasor measurement unit,PMU)的优化配置问题成为研究的重点。本文在分析WAMS/SCADA混合量测数据成分、时间断面、精度、刷新频率4个方面差异的基础上,实现了混合量测数据的有效兼容,提出了一种基于无迹卡尔曼滤波(unscented kalman filter,UKF)动态状态估计和离散粒子群优化(discrete particle swarm optimization,DPSO)算法的PMU优化配置方案。采用该方案下的混合量测数据进行UKF动态状态估计,很好地提高了状态估计精度。在IEEE39节点系统上模拟日负荷变化验证了该PMU配置方案的有效性。展开更多
文摘This paper aims to find strategic locations for additional Phasor Measurement Units (PMUs) installation while considering resiliency of existing PMU measurement system. A virtual attack agent is modeled based on an optimization framework. The virtual attack agent targets to minimize observability of power system by coordinated attack on a subset of critical PMUs. A planner agent is then introduced which analyzes the attack pattern of virtual attack agent. The goal of the planner agent is to mitigate the vulnerability posed by the virtual attack agent by placing additional PMUs at strategic locations. The ensuing problem is formulated as an optimization problem. The proposed framework is applied on 14, 30, 57 and 118 bus test systems, including a large 2383 node western polish test system to demonstrate the feasibility of proposed approach for large systems.
文摘Phasor measurement units(PMUs)are preferred for installation at weak buses in a power network.Therefore,the weak buses need to be located and the strategic locations of PMUs identified to ensure network observability.Thus,the primary aim of this work is to identify the placements of the maximum number of PMUs installed at the weak buses in the electrical network.The voltage collapse proximity indicator,line stability index,fast voltage stability index,and a new voltage stability indicator utilizing load flow measurement are used to determine the weak buses.A novel deterministic methodology based on a binary-integer linear programming model is then proposed to determine the optimal locations of PMUs.The effect of a single PMU outage considering the weak buses is also demonstrated.The effectiveness of the developed approach is tested and validated on the standard IEEE 14-,118-,300-,and New England 39-bus systems.The obtained results are also compared to those using different weak bus methodologies.
文摘Normally, the power system observation is carried out for the optimal PMUs placement with minimum use of unit in the region of the Smart power grid system. By advanced tool, the process of protection and management of the power system is considered with the measurement of time-synchronized of the voltage and current. In order to have an efficient placement solution for the issue, a novel method is needed with the optimal approach. For complete power network observability of PMU optimal placement a new method is implemented. However, the process of placement and connection of the buses is considered at various places with the same cost of installation. GA based Enhanced Harmony and Binary Search Algorithm (GA-EHBSA) is proposed and utilized with the improvement to have least PMU placement and better optimization approach for finding the optimal location. To evaluate the optimal placement of PMUs the proposed approach is implemented in the standard test systems of IEEE 14-bus, IEEE 24-bus, IEEE 30-bus, IEEE 39-bus and IEEE 57-bus. The simulation results are evaluated and compared with existing algorithm to show the efficient process of optimal PMUs placement with better optimization, minimum cost and redundancy than the existing.
文摘当前应用于状态估计的量测数据由广域测量系统(wide area measurement system,WAMS)和数据监控及采集系统(supervisory control and data acquisition,SCADA)采集,WAMS向量测量单元(phasor measurement unit,PMU)的优化配置问题成为研究的重点。本文在分析WAMS/SCADA混合量测数据成分、时间断面、精度、刷新频率4个方面差异的基础上,实现了混合量测数据的有效兼容,提出了一种基于无迹卡尔曼滤波(unscented kalman filter,UKF)动态状态估计和离散粒子群优化(discrete particle swarm optimization,DPSO)算法的PMU优化配置方案。采用该方案下的混合量测数据进行UKF动态状态估计,很好地提高了状态估计精度。在IEEE39节点系统上模拟日负荷变化验证了该PMU配置方案的有效性。