期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Super-resolution reconstruction of synthetic-aperture radar image using adaptive-threshold singular value decomposition technique 被引量:2
1
作者 朱正为 周建江 《Journal of Central South University》 SCIE EI CAS 2011年第3期809-815,共7页
A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F... A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results. 展开更多
关键词 synthetic-aperture radar image reconstruction super-resolution singular value decomposition adaptive-threshold
下载PDF
Image super-resolution reconstruction based on sparse representation and residual compensation 被引量:1
2
作者 史郡 王晓华 《Journal of Beijing Institute of Technology》 EI CAS 2013年第3期394-399,共6页
A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the co... A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the constraint of the patched-based reconstruction, and compensating residual errors of the reconstruction results both locally and globally to solve the distortion problem in patch-based reconstruction algorithms. Three reconstruction algorithms are compared. The results show that the images reconstructed with the new algorithm have the best quality. 展开更多
关键词 super-resolution reconstruction sparse representation image patch residual compen-sation
下载PDF
Super-resolution image reconstruction based on three-step-training neural networks
3
作者 Fuzhen Zhu Jinzong Li Bing Zhu Dongdong Ma 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期934-940,共7页
A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite ima... A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method. 展开更多
关键词 image reconstruction super-resolution three-steptraining neural network BP algorithm vector mapping.
下载PDF
Multi-channel fast super-resolution image reconstruction based on matrix observation model
4
作者 刘洪臣 冯勇 李林静 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第2期239-246,共8页
A multi-channel fast super-resolution image reconstruction algorithm based on matrix observation model is proposed in the paper,which consists of three steps to avoid the computational complexity: a single image SR re... A multi-channel fast super-resolution image reconstruction algorithm based on matrix observation model is proposed in the paper,which consists of three steps to avoid the computational complexity: a single image SR reconstruction step,a registration step and a wavelet-based image fusion. This algorithm decomposes two large matrixes to the tensor product of two little matrixes and uses the natural isomorphism between matrix space and vector space to transform cost function based on matrix-vector products model to matrix form. Furthermore,we prove that the regularization part can be transformed to the matrix formed. The conjugate-gradient method is used to solve this new model. Finally,the wavelet fusion is used to integrate all the registered highresolution images obtained from the single image SR reconstruction step. The proposed algorithm reduces the storage requirement and the calculating complexity,and can be applied to large-dimension low-resolution images. 展开更多
关键词 super-resolution image reconstruction tensor product wavelet fusion
下载PDF
Transformer and GAN-Based Super-Resolution Reconstruction Network for Medical Images 被引量:1
5
作者 Weizhi Du Shihao Tian 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第1期197-206,共10页
Super-resolution reconstruction in medical imaging has become more demanding due to the necessity of obtaining high-quality images with minimal radiation dose,such as in low-field magnetic resonance imaging(MRI).Howev... Super-resolution reconstruction in medical imaging has become more demanding due to the necessity of obtaining high-quality images with minimal radiation dose,such as in low-field magnetic resonance imaging(MRI).However,image super-resolution reconstruction remains a difficult task because of the complexity and high textual requirements for diagnosis purpose.In this paper,we offer a deep learning based strategy for reconstructing medical images from low resolutions utilizing Transformer and generative adversarial networks(T-GANs).The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction.Furthermore,we weighted the combination of content loss,adversarial loss,and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN.In comparison to established measures like peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM),our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly. 展开更多
关键词 super-resolution image reconstruction TRANSFORMER generative adversarial network(GAN)
原文传递
Research on the Application of Super Resolution Reconstruction Algorithm for Underwater Image 被引量:3
6
作者 Tingting Yang Shuwen Jia Hao Ma 《Computers, Materials & Continua》 SCIE EI 2020年第3期1249-1258,共10页
Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water a... Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water and light,the image super-resolution reconstruction technique is applied to the underwater image processing.This paper addresses the problem of generating super-resolution underwater images by convolutional neural network framework technology.We research the degradation model of underwater images,and analyze the lower-resolution factors of underwater images in different situations,and compare different traditional super-resolution image reconstruction algorithms.We further show that the algorithm of super-resolution using deep convolution networks(SRCNN)which applied to super-resolution underwater images achieves good results. 展开更多
关键词 Underwater image image super-resolution algorithm algorithm reconstruction degradation model
下载PDF
Method of lateral image reconstruction in structured illumination microscopy with super resolution
7
作者 Qiang Yang Liangcai Cao +2 位作者 Hua Zhang Hao Zhang Guofan Jin 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2016年第3期4-18,共15页
The image reconstruction process in super-resolution structured illumination microscopy(SIM)is investigated.The structured pattern is generated by the interference of two Gaussian beams to encode undetectable spectra ... The image reconstruction process in super-resolution structured illumination microscopy(SIM)is investigated.The structured pattern is generated by the interference of two Gaussian beams to encode undetectable spectra into detectable region of microscope.After parameters estimation of the structured pattern,the encoded spectra are computationally decoded and recombined in Fourier domain to equivalently increase the cut-off frequency of microscope,resulting in the extension of detectable spectra and a reconstructed image with about two-fold enhanced resolution.Three di®erent methods to estimate the initial phase of structured pattern are compared,verifying the auto-correlation algorithm a®ords the fast,most precise and robust measurement.The artifacts sources and detailed reconstruction°owchart for both linear and nonlinear SIM are also presented. 展开更多
关键词 MICROSCOPY structured illumination super-resolution image reconstruction
下载PDF
A NOVEL METHOD TO REALIZE COMPRESSED VIDEO SUPER-RESOLUTION RECONSTRUCTION
8
作者 Zhou Liang Liu Feng Zhu Xiuchang 《Journal of Electronics(China)》 2006年第2期310-313,共4页
This letter proposes a novel method of compressed video super-resolution reconstruction based on MAP-POCS (Maximum Posterior Probability-Projection Onto Convex Set). At first assuming the high-resolution model subject... This letter proposes a novel method of compressed video super-resolution reconstruction based on MAP-POCS (Maximum Posterior Probability-Projection Onto Convex Set). At first assuming the high-resolution model subject to Poisson-Markov distribution, then constructing the projecting convex based on MAP. According to the characteristics of compressed video, two different convexes are constructed based on integrating the inter-frame and intra-frame information in the wavelet-domain. The results of the experiment demonstrate that the new method not only outperforms the traditional algorithms on the aspects of PSNR (Peak Signal-to-Noise Ratio), MSE (Mean Square Error) and reconstruction vision effect, but also has the advantages of rapid convergence and easy extension. 展开更多
关键词 super-resolution Compressed video image reconstruction MAP-pocs
下载PDF
Combination of super-resolution reconstruction and SGA-Net for marsh vegetation mapping using multi-resolution multispectral and hyperspectral images 被引量:1
9
作者 Bolin Fu Xidong Sun +5 位作者 Yuyang Li Zhinan Lao Tengfang Deng Hongchang He Weiwei Sun Guoqing Zhou 《International Journal of Digital Earth》 SCIE EI 2023年第1期2724-2761,共38页
Vegetation is crucial for wetland ecosystems.Human activities and climate changes are increasingly threatening wetland ecosystems.Combining satellite images and deep learning for classifying marsh vegetation communiti... Vegetation is crucial for wetland ecosystems.Human activities and climate changes are increasingly threatening wetland ecosystems.Combining satellite images and deep learning for classifying marsh vegetation communities has faced great challenges because of its coarse spatial resolution and limited spectral bands.This study aimed to propose a method to classify marsh vegetation using multi-resolution multispectral and hyperspectral images,combining super-resolution techniques and a novel self-constructing graph attention neural network(SGA-Net)algorithm.The SGA-Net algorithm includes a decoding layer(SCE-Net)to preciselyfine marsh vegetation classification in Honghe National Nature Reserve,Northeast China.The results indicated that the hyperspectral reconstruction images based on the super-resolution convolutional neural network(SRCNN)obtained higher accuracy with a peak signal-to-noise ratio(PSNR)of 28.87 and structural similarity(SSIM)of 0.76 in spatial quality and root mean squared error(RMSE)of 0.11 and R^(2) of 0.63 in spectral quality.The improvement of classification accuracy(MIoU)by enhanced super-resolution generative adversarial network(ESRGAN)(6.19%)was greater than that of SRCNN(4.33%)and super-resolution generative adversarial network(SRGAN)(3.64%).In most classification schemes,the SGA-Net outperformed DeepLabV3+and SegFormer algorithms for marsh vegetation and achieved the highest F1-score(78.47%).This study demonstrated that collaborative use of super-resolution reconstruction and deep learning is an effective approach for marsh vegetation mapping. 展开更多
关键词 Marsh vegetation classification super-resolution reconstruction SGA-Net and SegFormer multispectral and hyperspectral images spectral restoration spatial resolution improvement
原文传递
Deep-learning-based methods for super-resolution fluorescence microscopy
10
作者 Jianhui Liao Junle Qu +1 位作者 Yongqi Hao Jia Li 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2023年第3期85-100,共16页
The algorithm used for reconstruction or resolution enhancement is one of the factors affectingthe quality of super-resolution images obtained by fluorescence microscopy.Deep-learning-basedalgorithms have achieved sta... The algorithm used for reconstruction or resolution enhancement is one of the factors affectingthe quality of super-resolution images obtained by fluorescence microscopy.Deep-learning-basedalgorithms have achieved stateof-the-art performance in super-resolution fluorescence micros-copy and are becoming increasingly attractive.We firstly introduce commonly-used deep learningmodels,and then review the latest applications in terms of the net work architectures,the trainingdata and the loss functions.Additionally,we discuss the challenges and limits when using deeplearning to analyze the fluorescence microscopic data,and suggest ways to improve the reliability and robustness of deep learning applications. 展开更多
关键词 super-resolution fuorescence microscopy deep learning convolutional neural net-work generative adversarial network image reconstruction
下载PDF
Study on infrared image super-resolution reconstruction based on an improved POCS algorithm
11
作者 Shaosheng Dai Junjie Cui +2 位作者 Dezhou Zhang Qin Liu Xiaoxiao Zhang 《Journal of Semiconductors》 EI CAS CSCD 2017年第4期78-82,共5页
Aiming at the disadvantages of the traditional projection onto convex sets of blurry edges and lack of image details,this paper proposes an improved projection onto convex sets(POCS) method to enhance the quality of... Aiming at the disadvantages of the traditional projection onto convex sets of blurry edges and lack of image details,this paper proposes an improved projection onto convex sets(POCS) method to enhance the quality of image super-resolution reconstruction(SRR).In traditional POCS method,bilinear interpolation easily blurs the image.In order to improve the initial estimation of high-resolution image(HRI) during reconstruction of POCS algorithm,the initial estimation of HRI is obtained through iterative curvature-based interpolation(ICBI) instead of bilinear interpolation.Compared with the traditional POCS algorithm,the experimental results in subjective evaluation and objective evaluation demonstrate the effectiveness of the proposed method.The visual effect is improved significantly and image detail information is preserved better. 展开更多
关键词 pocs infrared image super-resolution initial estimation
原文传递
基于投影修正和POCS的图像超分辨率重建 被引量:4
12
作者 杨欣 唐庭阁 +1 位作者 费树岷 周大可 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第5期564-568,共5页
针对超分辨重建技术中传统POCS图像重建算法存在的Gibbs效应问题,提出一种采用投影修正机制抑制Gibbs效应的图像超分辨率重建算法.首先针对初始图像采用方向差分方法获得图像的边缘约束算子;随后在每一次的迭代重建过程中,结合前后重建... 针对超分辨重建技术中传统POCS图像重建算法存在的Gibbs效应问题,提出一种采用投影修正机制抑制Gibbs效应的图像超分辨率重建算法.首先针对初始图像采用方向差分方法获得图像的边缘约束算子;随后在每一次的迭代重建过程中,结合前后重建结果的差值和边缘约束算子设计投影修正算子,并对残差阈值和点扩散函数分别进行修正,从而获得修正后的数据一致性投影过程;最后利用修正的投影过程获得最终重建图像.试验结果表明:改进算法具有较好的峰值信噪比,并且有效抑制了Gibbs效应,具有较好的应用前景. 展开更多
关键词 图像重建 超分辨率 图像增强 凸集投影 Gibbs现象
下载PDF
基于POCS框架的时空联合自适应视频超分辨率重建算法 被引量:5
13
作者 田敬北 侯天峰 李梦和 《计算机应用研究》 CSCD 北大核心 2011年第7期2778-2781,共4页
针对传统POCS(projection onto convex sets)算法的局限性,提出了一种基于POCS框架的时空联合自适应视频超分辨率重建算法。通过引入时空联合自适应机制,算法有效地减缓了错误运动估计信息对重建图像质量的影响,克服了传统POCS算法对目... 针对传统POCS(projection onto convex sets)算法的局限性,提出了一种基于POCS框架的时空联合自适应视频超分辨率重建算法。通过引入时空联合自适应机制,算法有效地减缓了错误运动估计信息对重建图像质量的影响,克服了传统POCS算法对目标运动剧烈的视频序列重建时存在的噪声放大效应。实验结果表明,该算法有效地缓解了噪声放大,重建图像主观质量得到了增强,提高了信噪比。 展开更多
关键词 超分辨率 图像重建 凸集投影 自适应
下载PDF
一种基于凸集投影(POCS)的数字图像超分辨率重建算法 被引量:12
14
作者 庞亚红 毛幼菊 《计算机工程与应用》 CSCD 北大核心 2005年第4期69-71,共3页
该文研究了一种基于凸集投影(POCS)算法的超分辨率图像重建方法,分析了POCS方法恢复图像的理论算法,通过仿真对比了其与双线性插值方法恢复超分辨率图像的差异,仿真结果表明,该方法明显地提高了超分辨率图像的恢复质量。
关键词 超分辨率 图像恢复 凸集投影
下载PDF
基于加权POCS的图像超分辨率重建 被引量:4
15
作者 姚琦 沈松 朱飞 《计算机工程》 CAS CSCD 2013年第3期264-266,271,共4页
对凸集投影(POCS)图像超分辨率重建算法中的残差修复阈值选取问题进行分析,提出一种基于图像超分辨率重建的改进算法。改变传统POCS算法中固定残差修复阈值模式,通过引入低分辨率图像清晰度这一先验信息,用表征图像相对清晰度的参数控... 对凸集投影(POCS)图像超分辨率重建算法中的残差修复阈值选取问题进行分析,提出一种基于图像超分辨率重建的改进算法。改变传统POCS算法中固定残差修复阈值模式,通过引入低分辨率图像清晰度这一先验信息,用表征图像相对清晰度的参数控制阈值,从而实现整个重建过程阈值动态选取。实验结果证明,该算法能提高残差计算和阈值选取的针对性,对提升重建图像的清晰度及信噪比具有较好的效果。 展开更多
关键词 超分辨率重建 凸集投影 残差修复阈值 加权凸集投影 图像平均梯度 点扩散函数 空间频率
下载PDF
基于凸集投影(POCS)的车牌图像超分辨率重建研究 被引量:4
16
作者 余永松 吴炜 +1 位作者 陈为龙 何小海 《计算机与数字工程》 2009年第2期139-142,共4页
针对车牌识别中所拍摄的图像序列存在分辨率较低的问题,提出了利用图像间的互补信息来重建一幅高分辨率图像的方法,以便于车牌图像的识别。通过迭代求解法和高斯金字塔模型,快速精确地估计得到配准参数,采用凸集投影(POCS)算法对图像序... 针对车牌识别中所拍摄的图像序列存在分辨率较低的问题,提出了利用图像间的互补信息来重建一幅高分辨率图像的方法,以便于车牌图像的识别。通过迭代求解法和高斯金字塔模型,快速精确地估计得到配准参数,采用凸集投影(POCS)算法对图像序列进行了超分辨率重建。实验表明算法具有亚像素级的配准精度和较强的稳健性,重建图像取得了良好的视觉效果。 展开更多
关键词 超分辨率 图像配准 凸集投影(pocs) 图像重建 亚像素
下载PDF
基于POCS的微扫描超分辨率图像重建算法研究 被引量:6
17
作者 杜玉萍 刘严严 《光电技术应用》 2019年第6期25-28,44,共5页
超分辨率重建,就是从单帧或者序列低分辨率图像中,估计出接近原始高分辨率图像的过程。首先介绍了微扫描超分技术原理,给出了四幅通过微扫描超分相机拍摄的低分辨率图像,之后介绍了基于序列图像重建的超分辨率重建算法POCS(凸集投影法,p... 超分辨率重建,就是从单帧或者序列低分辨率图像中,估计出接近原始高分辨率图像的过程。首先介绍了微扫描超分技术原理,给出了四幅通过微扫描超分相机拍摄的低分辨率图像,之后介绍了基于序列图像重建的超分辨率重建算法POCS(凸集投影法,projections onto convex set,简称POCS),给出了算法的重构图像及细节对比。 展开更多
关键词 微扫描 超分辨率 图像重建 pocs
下载PDF
基于正交投影和广义投影(POCS)算法的研究进展 被引量:3
18
作者 姜明 张兆田 《CT理论与应用研究(中英文)》 2003年第1期51-55,共5页
目的 在于提请有关读者关注近年来关于图象重建的凸集投影算法的进展,这一重要的方法及应用。方法主要讨论了基于正交投影和广义投影的算法。对基于正交投影的算法,并讨论了一般形式的加权松弛格式,这包含了分块格式和同时格式。并以三... 目的 在于提请有关读者关注近年来关于图象重建的凸集投影算法的进展,这一重要的方法及应用。方法主要讨论了基于正交投影和广义投影的算法。对基于正交投影的算法,并讨论了一般形式的加权松弛格式,这包含了分块格式和同时格式。并以三个定理报道有关的算法收敛性结果。结果 分别包含了相容和不相容条件和弱强收敛下的结果。对基于广义投影的算法,有关的基本概念和例子,基本算法的收敛性结果。 结论 报道最近关于引入松弛系数的工作和在CT图象重建中的应用。 展开更多
关键词 正交投影 广义投影 pocs 算法 研究进展
下载PDF
一种改进的POCS算法的超分辨率图像重建 被引量:7
19
作者 徐宏财 向健勇 潘皓 《红外技术》 CSCD 北大核心 2005年第6期477-480,共4页
图像超分辨率是指从一组模糊的低分辨率图像重建一帧清晰的高分辨率图像的过程。从经典的基于凸集投影POCS(projection onto convex set)的超分辨率图像重建算法出发,分析重建后高分辨率图像边缘模糊的成因,提出了一种基于保留边缘信息... 图像超分辨率是指从一组模糊的低分辨率图像重建一帧清晰的高分辨率图像的过程。从经典的基于凸集投影POCS(projection onto convex set)的超分辨率图像重建算法出发,分析重建后高分辨率图像边缘模糊的成因,提出了一种基于保留边缘信息的POCS超分辨率图像重建算法。实验结果表明该方法能够明显地提高重建图像的质量。 展开更多
关键词 超分辨率 图像重建 凸集投影 边缘检测
下载PDF
基于非局部POCS的超分辨率图像重建 被引量:6
20
作者 罗国中 殷建平 祝恩 《计算机科学》 CSCD 北大核心 2014年第8期47-49,62,共4页
图像获取过程中,受成像系统的影响,无法获取原始场景中所有的信息。超分辨率图像重建技术就是在不改变成像系统的前提下,提高图像质量。POCS(凸集投影算法)可以利用多帧低分辨率图像重建一帧高分辨率图像。然而传统的POCS算法通常会产生... 图像获取过程中,受成像系统的影响,无法获取原始场景中所有的信息。超分辨率图像重建技术就是在不改变成像系统的前提下,提高图像质量。POCS(凸集投影算法)可以利用多帧低分辨率图像重建一帧高分辨率图像。然而传统的POCS算法通常会产生"锯齿"边缘。在自然图像中,会存在许多的相似边缘结构。利用局部相似性的结构,可以有效地消除"锯齿"边缘。因此提出一种基于非局部POCS的超分辨率图像重建算法,以有效锐化图像边缘,提高图像的视觉感观。 展开更多
关键词 超分辨率重建 pocs(凸集投影) 非局部均值滤波 图像插值
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部