The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(ar...The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(aramid nanofibers)–MoS_(2)composite films with nacre-like layered structure here are fabricated after the introduction of MoS_(2)into binary MXene/ANF composite system.The introduction of MoS_(2)fulfills an impressive“kill three birds with one stone”improvement effect:lubrication toughening mechanical performance,reduction in secondary reflection pollution of electromagnetic wave,and improvement in the performance of photothermal conversion.After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 50:50),the strain to failure and tensile strength increase from 22.1±1.7%and 105.7±6.4 MPa and to 25.8±0.7%and 167.3±9.1 MPa,respectively.The toughness elevates from 13.0±4.1 to 26.3±0.8 MJ m^(−3)(~102.3%)simultaneously.And the reflection shielding effectiveness(SE_(R))of MXene/ANF(mass ratio of 50:50)decreases~10.8%.EMI shielding effectiveness(EMI SE)elevates to 41.0 dB(8.2–12.4 GHz);After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 60:40),the strain to failure increases from 18.3±1.9%to 28.1±0.7%(~53.5%),the SE_(R)decreases~22.2%,and the corresponding EMI SE is 43.9 dB.The MoS_(2)also leads to a more efficient photothermal conversion performance(~45 to~55℃).Additionally,MXene/ANF–MoS_(2)composite films exhibit excellent electric heating performance,quick temperature elevation(15 s),excellent cycle stability(2,2.5,and 3 V),and long-term stability(2520 s).Combining with excellent mechanical performance with high MXene content,electric heating performance,and photothermal conversion performance,EMI shielding ternary MXene/ANF–MoS_(2)composite films could be applied in many industrial areas.This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.展开更多
Different tougheners including methyl methacrylate-butadiene-styrene terpolymer (MBS, core-shell type), maleic anhydride (MAH) grafted ethylene-octene copolymer (EOM), and MAH grafted polyethylene wax (PEM) were inves...Different tougheners including methyl methacrylate-butadiene-styrene terpolymer (MBS, core-shell type), maleic anhydride (MAH) grafted ethylene-octene copolymer (EOM), and MAH grafted polyethylene wax (PEM) were investigated for toughening the polycarbonate (PC) composites reinforced by short carbon fiber (SCF) and flake graphene (FG). The effects of tougheners on the preparation, thermal conductivity and mechanical properties of PC composites were studied. Scanning electron microscopy was used for characterizing the impact fracture surfaces of the composites. The results showed that introducing tougheners into the carbon reinforced PC composites was beneficial to improving the processability, and PEM was more effective than EOM and MBS. Meanwhile, the through-thickness and the in-plan thermal conductivity decreased to some degree due to the isolated island effects of tougheners. Moreover, the brittle PC composites with high flexural stress could be easily toughened by tougheners. In contrast, PEM had better toughening function than EOM and MBS, and correspondingly, the stiffness of the composites was the lowest for the PEM toughened systems. The fractography revealed that dense and uniformly distributed carbon fillers dispersed in matrix PC and circular cavities coexisted in the composites. The naked fiber length gradually increased as the ductility of composite materials improved.展开更多
It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranc...It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranched toughener,carboxylic acid-functionalized tannic acid(CATA),was successfully prepared and applicated to the preparation of solvent-free epoxy resins.The mechanical performance,morphology,structural characterization,and thermal characterization of toughened epoxy resin system were studied.The toughened epoxy resin system with only 1.0wt%CATA reached the highest impact strength,111%higher than the neat epoxy resin system.Notably,the tensile strength and elongation at break of toughened epoxy resin systems increased moderately with increasing CATA loading.Nonphase-separated hybrids with significant toughening effect were obtained.Additionally,the thermal stabilities of toughened epoxy resin systems decreased with increasing CATA loading.This study provides an eco-friendly,cost-effective,and facile approach for the preparation of high-performance,solvent-free epoxy resins with potential for practical applications in sealing integrated circuits and electrical devices fields.展开更多
This paper focuses on the influence of glycidyl methacrylate functionalized polyolefin elastomer (SOG-03) on the properties of PC/PBT alloys, and also made a contrastive analysis with ethylene-methyl acrylate-glycidyl...This paper focuses on the influence of glycidyl methacrylate functionalized polyolefin elastomer (SOG-03) on the properties of PC/PBT alloys, and also made a contrastive analysis with ethylene-methyl acrylate-glycidyl methacrylate terpolymer (EMA-co-GMA) and methyl methacrylate-butadiene-styrene terpolymer (MBS), the common toughener in PC/PBT alloy. The impact performance test results of PC/PBT alloys with different addition of SOG-03 showed that the brittle-ductile transition began when SOG-03 content reached 3 wt%. The microstructure, differential scanning calorimeter (DSC) and multi-extrusion process results of PC/PBT alloys all showed that SOG-03 tends to be dispersed in PBT phase and the dispersed SOG-03 presents typical rubber-toughened polymer morphology. The toughening efficiency of MBS on PC/PBT alloy was much lower than EMA-co-GMA and SOG-03, and showed a worse processing stability after multi-extrusion process and long-term thermal ageing properties. The EMA-co-GMA and SOG-03 toughened PC/PBT alloys showed an equivalent toughness, while the PC/PBT alloy with SOG-03 showed a better processing stability during the multi-extrusion process and long-term thermal ageing property when the thermal aging time is more than 600 h.展开更多
Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widesp...Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widespread attention and research.This article reviews the mixing and sintering processes in the preparation of graphene/ceramic com-posites,as well as the toughening mechanism of graphene on ceramic materials.It also looks forward to how to further enhance the toughening effect of graphene.展开更多
研究了一种新型增韧剂 (M POE g MAH )对PBT树脂的增韧效果。与传统的纯POE g MAH增韧剂(POE g MAH)进行对比 ,考察了增韧剂的组成、用量对共混物力学性能的不同影响 ,并结合共混物的室温缺口冲击断面SEM照片 ,分析了共混物发生脆韧转...研究了一种新型增韧剂 (M POE g MAH )对PBT树脂的增韧效果。与传统的纯POE g MAH增韧剂(POE g MAH)进行对比 ,考察了增韧剂的组成、用量对共混物力学性能的不同影响 ,并结合共混物的室温缺口冲击断面SEM照片 ,分析了共混物发生脆韧转变所对应的微观形貌特征。实验结果表明 ,在M POE g MAH/PBT共混体系中 ,POE g MAH用量占体系 10 %左右时共混物发生明显的脆韧转变 ,而在传统的纯POE g MAH/PBT共混体系中 ,POE g MAH用量为 15 %左右才使共混物发生脆韧转变。M POE g MAH增韧PBT在性能和成本上具有较大的优势 ,所得共混物产品的性价比较高。展开更多
利用熔融法 ,采用马来酸酐接枝乙烯 -辛烯共聚弹性体 (POE g MAH)增韧聚对苯二甲酸乙二醇酯 (PET) ,研究了热处理对PET/POE g MAH共混体系增韧效果的影响。结合共混材料的室温缺口冲击断面SEM照片 ,淬断刻蚀照片和宏观力学性能 ,分析了...利用熔融法 ,采用马来酸酐接枝乙烯 -辛烯共聚弹性体 (POE g MAH)增韧聚对苯二甲酸乙二醇酯 (PET) ,研究了热处理对PET/POE g MAH共混体系增韧效果的影响。结合共混材料的室温缺口冲击断面SEM照片 ,淬断刻蚀照片和宏观力学性能 ,分析了共混体系发生脆韧转变对应的微观形貌特征。结果表明POE g MAH与PET具有良好的相容性 ,热处理不但可以使PET/POE g MAH共混体系的拉伸强度增大 ,而且可以显著提高其冲击强度。展开更多
基金supported by the Talent Fund of Beijing Jiaotong University(No,2023XKRC015)the National Natural Science Foundation of China(Nos.52172081,52073010 and 52373259).
文摘The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(aramid nanofibers)–MoS_(2)composite films with nacre-like layered structure here are fabricated after the introduction of MoS_(2)into binary MXene/ANF composite system.The introduction of MoS_(2)fulfills an impressive“kill three birds with one stone”improvement effect:lubrication toughening mechanical performance,reduction in secondary reflection pollution of electromagnetic wave,and improvement in the performance of photothermal conversion.After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 50:50),the strain to failure and tensile strength increase from 22.1±1.7%and 105.7±6.4 MPa and to 25.8±0.7%and 167.3±9.1 MPa,respectively.The toughness elevates from 13.0±4.1 to 26.3±0.8 MJ m^(−3)(~102.3%)simultaneously.And the reflection shielding effectiveness(SE_(R))of MXene/ANF(mass ratio of 50:50)decreases~10.8%.EMI shielding effectiveness(EMI SE)elevates to 41.0 dB(8.2–12.4 GHz);After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 60:40),the strain to failure increases from 18.3±1.9%to 28.1±0.7%(~53.5%),the SE_(R)decreases~22.2%,and the corresponding EMI SE is 43.9 dB.The MoS_(2)also leads to a more efficient photothermal conversion performance(~45 to~55℃).Additionally,MXene/ANF–MoS_(2)composite films exhibit excellent electric heating performance,quick temperature elevation(15 s),excellent cycle stability(2,2.5,and 3 V),and long-term stability(2520 s).Combining with excellent mechanical performance with high MXene content,electric heating performance,and photothermal conversion performance,EMI shielding ternary MXene/ANF–MoS_(2)composite films could be applied in many industrial areas.This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.
文摘Different tougheners including methyl methacrylate-butadiene-styrene terpolymer (MBS, core-shell type), maleic anhydride (MAH) grafted ethylene-octene copolymer (EOM), and MAH grafted polyethylene wax (PEM) were investigated for toughening the polycarbonate (PC) composites reinforced by short carbon fiber (SCF) and flake graphene (FG). The effects of tougheners on the preparation, thermal conductivity and mechanical properties of PC composites were studied. Scanning electron microscopy was used for characterizing the impact fracture surfaces of the composites. The results showed that introducing tougheners into the carbon reinforced PC composites was beneficial to improving the processability, and PEM was more effective than EOM and MBS. Meanwhile, the through-thickness and the in-plan thermal conductivity decreased to some degree due to the isolated island effects of tougheners. Moreover, the brittle PC composites with high flexural stress could be easily toughened by tougheners. In contrast, PEM had better toughening function than EOM and MBS, and correspondingly, the stiffness of the composites was the lowest for the PEM toughened systems. The fractography revealed that dense and uniformly distributed carbon fillers dispersed in matrix PC and circular cavities coexisted in the composites. The naked fiber length gradually increased as the ductility of composite materials improved.
基金from the Special Fund for the Program for Zhejiang Provincial Natural Science Foundation of China(LZ16C160001)National Key Research and Development Program(2017YFD0601105),the National Natural Science Foundation of China(Grant No.21806142)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY20B070002).
文摘It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranched toughener,carboxylic acid-functionalized tannic acid(CATA),was successfully prepared and applicated to the preparation of solvent-free epoxy resins.The mechanical performance,morphology,structural characterization,and thermal characterization of toughened epoxy resin system were studied.The toughened epoxy resin system with only 1.0wt%CATA reached the highest impact strength,111%higher than the neat epoxy resin system.Notably,the tensile strength and elongation at break of toughened epoxy resin systems increased moderately with increasing CATA loading.Nonphase-separated hybrids with significant toughening effect were obtained.Additionally,the thermal stabilities of toughened epoxy resin systems decreased with increasing CATA loading.This study provides an eco-friendly,cost-effective,and facile approach for the preparation of high-performance,solvent-free epoxy resins with potential for practical applications in sealing integrated circuits and electrical devices fields.
文摘This paper focuses on the influence of glycidyl methacrylate functionalized polyolefin elastomer (SOG-03) on the properties of PC/PBT alloys, and also made a contrastive analysis with ethylene-methyl acrylate-glycidyl methacrylate terpolymer (EMA-co-GMA) and methyl methacrylate-butadiene-styrene terpolymer (MBS), the common toughener in PC/PBT alloy. The impact performance test results of PC/PBT alloys with different addition of SOG-03 showed that the brittle-ductile transition began when SOG-03 content reached 3 wt%. The microstructure, differential scanning calorimeter (DSC) and multi-extrusion process results of PC/PBT alloys all showed that SOG-03 tends to be dispersed in PBT phase and the dispersed SOG-03 presents typical rubber-toughened polymer morphology. The toughening efficiency of MBS on PC/PBT alloy was much lower than EMA-co-GMA and SOG-03, and showed a worse processing stability after multi-extrusion process and long-term thermal ageing properties. The EMA-co-GMA and SOG-03 toughened PC/PBT alloys showed an equivalent toughness, while the PC/PBT alloy with SOG-03 showed a better processing stability during the multi-extrusion process and long-term thermal ageing property when the thermal aging time is more than 600 h.
文摘Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widespread attention and research.This article reviews the mixing and sintering processes in the preparation of graphene/ceramic com-posites,as well as the toughening mechanism of graphene on ceramic materials.It also looks forward to how to further enhance the toughening effect of graphene.
文摘研究了一种新型增韧剂 (M POE g MAH )对PBT树脂的增韧效果。与传统的纯POE g MAH增韧剂(POE g MAH)进行对比 ,考察了增韧剂的组成、用量对共混物力学性能的不同影响 ,并结合共混物的室温缺口冲击断面SEM照片 ,分析了共混物发生脆韧转变所对应的微观形貌特征。实验结果表明 ,在M POE g MAH/PBT共混体系中 ,POE g MAH用量占体系 10 %左右时共混物发生明显的脆韧转变 ,而在传统的纯POE g MAH/PBT共混体系中 ,POE g MAH用量为 15 %左右才使共混物发生脆韧转变。M POE g MAH增韧PBT在性能和成本上具有较大的优势 ,所得共混物产品的性价比较高。
文摘利用熔融法 ,采用马来酸酐接枝乙烯 -辛烯共聚弹性体 (POE g MAH)增韧聚对苯二甲酸乙二醇酯 (PET) ,研究了热处理对PET/POE g MAH共混体系增韧效果的影响。结合共混材料的室温缺口冲击断面SEM照片 ,淬断刻蚀照片和宏观力学性能 ,分析了共混体系发生脆韧转变对应的微观形貌特征。结果表明POE g MAH与PET具有良好的相容性 ,热处理不但可以使PET/POE g MAH共混体系的拉伸强度增大 ,而且可以显著提高其冲击强度。