The rapid development of location-based social networks(LBSNs) provides people with an opportunity of better understanding their mobility behavior which enables them to decide their next location.For example,it can he...The rapid development of location-based social networks(LBSNs) provides people with an opportunity of better understanding their mobility behavior which enables them to decide their next location.For example,it can help travelers to choose where to go next,or recommend salesmen the most potential places to deliver advertisements or sell products.In this paper,a method for recommending points of interest(POIs)is proposed based on a collaborative tensor factorization(CTF)technique.Firstly,a generalized objective function is constructed for collaboratively factorizing a tensor with several feature matrices.Secondly,a 3-mode tensor is used to model all users' check-in behaviors,and three feature matrices are extracted to characterize the time distribution,category distribution and POI correlation,respectively.Thirdly,each user's preference to a POI at a specific time can be estimated by using CTF.In order to further improve the recommendation accuracy,PCTF(Partitionbased CTF) is proposed to fill the missing entries of a tensor after clustering its every mode.Experiments on a real checkin database show that the proposed method can provide more accurate location recommendation.展开更多
Recently, as location-based social network(LBSN) rapidly grow, point-of-interest(POI) recommendation has become an important way to help people locate interesting places. Nowadays, there have been deep studies conduct...Recently, as location-based social network(LBSN) rapidly grow, point-of-interest(POI) recommendation has become an important way to help people locate interesting places. Nowadays, there have been deep studies conducted on the geographical and social influence in the point-of-interest recommendation model based on the rating prediction. The fact is, however, relying solely on the rating fails to reflect the user's preferences very accurately, because the users are most concerned with the list of ranked point-of-interests(POIs) on the actual output of recommender systems. In this paper, we propose a co-pairwise ranking model called Geo-Social Bayesian Personalized Ranking model(GSBPR), which is based on the pairwise ranking with the exploiting geo-social correlations by incorporating the method of ranking learning into the process of POI recommendation. In this model, we develop a novel BPR pairwise ranking assumption by injecting users' geo-social preference. Based on this assumption, the POI recommendation model is reformulated by a three-level joint pairwise ranking model. And the experimental results based on real datasets show that the proposed method in this paper enjoys better recommendation performance compared to other state-of-the-art POI recommendation models.展开更多
The problem of low accuracy of POI(Points of Interest)recommendation in LBSN(Location-Based Social Networks)has not been effectively solved.In this paper,a POI recommendation algorithm based on non-convex regularized ...The problem of low accuracy of POI(Points of Interest)recommendation in LBSN(Location-Based Social Networks)has not been effectively solved.In this paper,a POI recommendation algorithm based on non-convex regularized tensor completion is proposed.The fourth-order tensor is constructed by using the current location category,the next location category,time and season,the regularizer is added to the objective function of tensor completion to prevent over-fitting and reduce the error of the model.The proximal algorithm is used to solve the objective function,and the adaptive momentum is introduced to improve the efficiency of the solution.The experimental results show that the algorithm can improve recommendation accuracy while reducing the time cost.展开更多
With the rapid development of location-based services and online social networks,POI recommendation services considering geographic and social factors have received extensive attention.Meanwhile,the vigorous developme...With the rapid development of location-based services and online social networks,POI recommendation services considering geographic and social factors have received extensive attention.Meanwhile,the vigorous development of cloud computing has prompted service providers to outsource data to the cloud to provide POI recommendation services.However,there is a degree of distrust of the cloud by service providers.To protect digital assets,service providers encrypt data before outsourcing it.However,encryption reduces data availability,making it more challenging to provide POI recommendation services in outsourcing scenarios.Some privacy-preserving schemes for geo-social-based POI recommendation have been presented,but they have some limitations in supporting group query,considering both geographic and social factors,and query accuracy,making these schemes impractical.To solve this issue,we propose two practical and privacy-preserving geo-social-based POI recommendation schemes for single user and group users,which are named GSPR-S and GSPR-G.Specifically,we first utilize the quad tree to organize geographic data and the MinHash method to index social data.Then,we apply BGV fully homomorphic encryption to design some private algorithms,including a private max/min operation algorithm,a private rectangular set operation algorithm,and a private rectangular overlapping detection algorithm.After that,we use these algorithms as building blocks in our schemes for efficiency improvement.According to security analysis,our schemes are proven to be secure against the honest-but-curious cloud servers,and experimental results show that our schemes have good performance.展开更多
In mobile social networks,next point-of-interest(POI)recommendation is a very important function that can provide personalized location-based services for mobile users.In this paper,we propose a recurrent neural netwo...In mobile social networks,next point-of-interest(POI)recommendation is a very important function that can provide personalized location-based services for mobile users.In this paper,we propose a recurrent neural network(RNN)-based next POI recommendation approach that considers both the location interests of similar users and contextual information(such as time,current location,and friends’preferences).We develop a spatial-temporal topic model to describe users’location interest,based on which we form comprehensive feature representations of user interests and contextual information.We propose a supervised RNN learning prediction model for next POI recommendation.Experiments based on real-world dataset verify the accuracy and efficiency of the proposed approach,and achieve best F1-score of 0.196754 on the Gowalla dataset and 0.354592 on the Brightkite dataset.展开更多
With the rapid growth of location-based social networks (LBSNs), point-of-interest (POI) recommendation has become an important research problem. As one of the most representative social media platforms, Twitter p...With the rapid growth of location-based social networks (LBSNs), point-of-interest (POI) recommendation has become an important research problem. As one of the most representative social media platforms, Twitter provides various real-life information for POI recommendation in real time. Despite that POI recommendation has been actively studied, tweet images have not been well utilized for this research problem. State-of-the-art visual features like convolutional neural network (CNN) features have shown significant performance gains over the traditional bag-of-visual-words in unveiling the image's semantics. Unfortunately, they have not been employed for POI recommendation from social websites. Hence, how to make the most of tweet images to improve the performance of POI recommendation and visualization remains open In this paper, we thoroughly study the impact of tweet images on POI recommendation for different POI categories using various visual features. A novel topic model called social media Twitter-latent Dirichlet allocation (SM-TwitterLDA) which jointly models five Twitter features, (i.e., text, image, location, timestamp and hashtag) is designed to discover POIs from the sheer amount of tweets. Moreover, each POI is visualized by representative images selected on three predefined criteria. Extensive experiments have been conducted on a real-life tweet dataset to verify the effectiveness of our method.展开更多
The rising prosperity of Location-based Social Networks(LBSNs)witnessed an explosion in the availability of geo-tagged social media data,which enables tremendous location-aware online services,especially next point of...The rising prosperity of Location-based Social Networks(LBSNs)witnessed an explosion in the availability of geo-tagged social media data,which enables tremendous location-aware online services,especially next point of interest(POI)recommendation.However,previous next POI recommendation studies usually adopt fix-length time windows for user check-in sequence modeling,leading to a limited capacity in capturing fine-grained user temporal preferences that easily change over time.Besides,existing methods often directly leverage multi-modal contexts as auxiliary to alleviate the data sparsity issue,which fails to fully exploit the sequential patterns of contextual information for inferring user interest drift.To address the above challenges,we propose a novel framework named iTourSPOT which extends traditional collaborative filtering methods with a context-aware POI embedding architecture.For enhancing temporal interests modeling capacity,we associate the context feature extraction with varying-length sessions and incorporate check-in frequencies of POIs as prior knowledge to instruct the session representation learning of our model.Moreover,a collaborative sequence transduction model is designed for joint context sequence modeling and session-based POI recommendation.Experimental results on a real-world geo-tagged photo dataset clearly demonstrate the effectiveness of the proposed framework when compared with state-of-the-art baseline methods,especially in both sparse and cold-start scenarios.展开更多
With the rapid development of location-based networks, point-of-interest(POI) recommendation has become an important means to help people discover interesting and attractive locations, especially when users travel o...With the rapid development of location-based networks, point-of-interest(POI) recommendation has become an important means to help people discover interesting and attractive locations, especially when users travel out of town. However, because users only check-in interaction is highly sparse, which creates a big challenge for POI recommendation. To tackle this challenge, we propose a joint probabilistic generative model called geographical temporal social content popularity(GTSCP) to imitate user check-in activities in a process of decision making, which effectively integrates the geographical influence, temporal effect, social correlation, content information and popularity impact factors to overcome the data sparsity, especially for out-of-town users. Our proposed the GTSCP supports two recommendation scenarios in a joint model, i.e., home-town recommendation and out-of-town recommendation. Experimental results show that GTSCP achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques.展开更多
The rapid development of location-based social networks(LBSNs) has provided an unprecedented opportunity for better location-based services through point-of-interest(POI) recommendation. POI recommendation is pers...The rapid development of location-based social networks(LBSNs) has provided an unprecedented opportunity for better location-based services through point-of-interest(POI) recommendation. POI recommendation is personalized, location-aware, and context depended. However, extreme sparsity of user-POI matrix creates a severe challenge. In this paper we propose a textual-geographical-social aware probabilistic matrix factorization method for POI recommendation. Our model is textual-geographical-social aware probabilistic matrix factorization called TGS-PMF, it exploits textual information, geographical information, social information, and incorporates these factors effectively. First, we exploit an aggregated latent Dirichlet allocation(LDA) model to learn the interest topics of users and infer the interest POIs by mining textual information associated with POIs and generate interest relevance score. Second, we propose a kernel estimation method with an adaptive bandwidth to model the geographical correlations and generate geographical relevance score. Third, we build social relevance through the power-law distribution of user social relations to generate social relevance score. Then, our exploit probabilistic matrix factorization model(PMF) to integrate the interest, geographical, social relevance scores for POI recommendation. Finally, we implement experiments on a real LBSN check-in dataset. Experimental results show that TGS-PMF achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques.展开更多
With the booming of the Internet of Things(Io T)and the speedy advancement of Location-Based Social Networks(LBSNs),Point-Of-Interest(POI)recommendation has become a vital strategy for supporting people’s ability to ...With the booming of the Internet of Things(Io T)and the speedy advancement of Location-Based Social Networks(LBSNs),Point-Of-Interest(POI)recommendation has become a vital strategy for supporting people’s ability to mine their POIs.However,classical recommendation models,such as collaborative filtering,are not effective for structuring POI recommendations due to the sparseness of user check-ins.Furthermore,LBSN recommendations are distinct from other recommendation scenarios.With respect to user data,a user’s check-in record sequence requires rich social and geographic information.In this paper,we propose two different neural-network models,structural deep network Graph embedding Neural-network Recommendation system(SG-Neu Rec)and Deepwalk on Graph Neural-network Recommendation system(DG-Neu Rec)to improve POI recommendation.combined with embedding representation from social and geographical graph information(called SG-Neu Rec and DG-Neu Rec).Our model naturally combines the embedding representations of social and geographical graph information with user-POI interaction representation and captures the potential user-POI interactions under the framework of the neural network.Finally,we compare the performances of these two models and analyze the reasons for their differences.Results from comprehensive experiments on two real LBSNs datasets indicate the effective performance of our model.展开更多
基金supported in part by the National Nature Science Foundation of China(91218301,61572360)the Basic Research Projects of People's Public Security University of China(2016JKF01316)Shanghai Shuguang Program(15SG18)
文摘The rapid development of location-based social networks(LBSNs) provides people with an opportunity of better understanding their mobility behavior which enables them to decide their next location.For example,it can help travelers to choose where to go next,or recommend salesmen the most potential places to deliver advertisements or sell products.In this paper,a method for recommending points of interest(POIs)is proposed based on a collaborative tensor factorization(CTF)technique.Firstly,a generalized objective function is constructed for collaboratively factorizing a tensor with several feature matrices.Secondly,a 3-mode tensor is used to model all users' check-in behaviors,and three feature matrices are extracted to characterize the time distribution,category distribution and POI correlation,respectively.Thirdly,each user's preference to a POI at a specific time can be estimated by using CTF.In order to further improve the recommendation accuracy,PCTF(Partitionbased CTF) is proposed to fill the missing entries of a tensor after clustering its every mode.Experiments on a real checkin database show that the proposed method can provide more accurate location recommendation.
基金supported by National Basic Research Program of China (2012CB719905)National Natural Science Funds of China (41201404)Fundamental Research Funds for the Central Universities of China (2042018gf0008)
文摘Recently, as location-based social network(LBSN) rapidly grow, point-of-interest(POI) recommendation has become an important way to help people locate interesting places. Nowadays, there have been deep studies conducted on the geographical and social influence in the point-of-interest recommendation model based on the rating prediction. The fact is, however, relying solely on the rating fails to reflect the user's preferences very accurately, because the users are most concerned with the list of ranked point-of-interests(POIs) on the actual output of recommender systems. In this paper, we propose a co-pairwise ranking model called Geo-Social Bayesian Personalized Ranking model(GSBPR), which is based on the pairwise ranking with the exploiting geo-social correlations by incorporating the method of ranking learning into the process of POI recommendation. In this model, we develop a novel BPR pairwise ranking assumption by injecting users' geo-social preference. Based on this assumption, the POI recommendation model is reformulated by a three-level joint pairwise ranking model. And the experimental results based on real datasets show that the proposed method in this paper enjoys better recommendation performance compared to other state-of-the-art POI recommendation models.
文摘The problem of low accuracy of POI(Points of Interest)recommendation in LBSN(Location-Based Social Networks)has not been effectively solved.In this paper,a POI recommendation algorithm based on non-convex regularized tensor completion is proposed.The fourth-order tensor is constructed by using the current location category,the next location category,time and season,the regularizer is added to the objective function of tensor completion to prevent over-fitting and reduce the error of the model.The proximal algorithm is used to solve the objective function,and the adaptive momentum is introduced to improve the efficiency of the solution.The experimental results show that the algorithm can improve recommendation accuracy while reducing the time cost.
基金supported by the National Key Research and Development Program of China(2021YFB3101300,2021YFB3101303)the Natural Science Foundation of China(U22B2030,62302374)+4 种基金Shaanxi Provincial Key Research and Development Program(2023-ZDLGY-35)China Postdoctoral Science Foundation(2022M722498)the Natural Science Basic Research Plan in Shaanxi Province of China(2023-JC-QN-0699)Qin Chuangyuan Cited High-level Innovative and Entrepreneurial Talents Project(QCYRCXM-2022-244)the Science and Technology on Communication Networks Laboratory(HHX23641X003)。
文摘With the rapid development of location-based services and online social networks,POI recommendation services considering geographic and social factors have received extensive attention.Meanwhile,the vigorous development of cloud computing has prompted service providers to outsource data to the cloud to provide POI recommendation services.However,there is a degree of distrust of the cloud by service providers.To protect digital assets,service providers encrypt data before outsourcing it.However,encryption reduces data availability,making it more challenging to provide POI recommendation services in outsourcing scenarios.Some privacy-preserving schemes for geo-social-based POI recommendation have been presented,but they have some limitations in supporting group query,considering both geographic and social factors,and query accuracy,making these schemes impractical.To solve this issue,we propose two practical and privacy-preserving geo-social-based POI recommendation schemes for single user and group users,which are named GSPR-S and GSPR-G.Specifically,we first utilize the quad tree to organize geographic data and the MinHash method to index social data.Then,we apply BGV fully homomorphic encryption to design some private algorithms,including a private max/min operation algorithm,a private rectangular set operation algorithm,and a private rectangular overlapping detection algorithm.After that,we use these algorithms as building blocks in our schemes for efficiency improvement.According to security analysis,our schemes are proven to be secure against the honest-but-curious cloud servers,and experimental results show that our schemes have good performance.
基金This work was partially supported by the National Key Research and Development Program of China under Grant No.2018YFB1004704the National Natural Science Foundation of China under Grant Nos.61972196,61832008,61832005+1 种基金the Key Research and Development Program of Jiangsu Province of China under Grant No.BE2018116,the open Project from the State Key Laboratory of Smart Grid Protection and Operation Control“Research on Smart Integration of Terminal-Edge-Cloud Techniques for Pervasive Internet of Things”the Collaborative Innovation Center of Novel Software Technology and Industrialization.
文摘In mobile social networks,next point-of-interest(POI)recommendation is a very important function that can provide personalized location-based services for mobile users.In this paper,we propose a recurrent neural network(RNN)-based next POI recommendation approach that considers both the location interests of similar users and contextual information(such as time,current location,and friends’preferences).We develop a spatial-temporal topic model to describe users’location interest,based on which we form comprehensive feature representations of user interests and contextual information.We propose a supervised RNN learning prediction model for next POI recommendation.Experiments based on real-world dataset verify the accuracy and efficiency of the proposed approach,and achieve best F1-score of 0.196754 on the Gowalla dataset and 0.354592 on the Brightkite dataset.
基金supported by the National Key Project of Scientific and Technical Supporting Programs of China(2014BAH26F02)
文摘With the rapid growth of location-based social networks (LBSNs), point-of-interest (POI) recommendation has become an important research problem. As one of the most representative social media platforms, Twitter provides various real-life information for POI recommendation in real time. Despite that POI recommendation has been actively studied, tweet images have not been well utilized for this research problem. State-of-the-art visual features like convolutional neural network (CNN) features have shown significant performance gains over the traditional bag-of-visual-words in unveiling the image's semantics. Unfortunately, they have not been employed for POI recommendation from social websites. Hence, how to make the most of tweet images to improve the performance of POI recommendation and visualization remains open In this paper, we thoroughly study the impact of tweet images on POI recommendation for different POI categories using various visual features. A novel topic model called social media Twitter-latent Dirichlet allocation (SM-TwitterLDA) which jointly models five Twitter features, (i.e., text, image, location, timestamp and hashtag) is designed to discover POIs from the sheer amount of tweets. Moreover, each POI is visualized by representative images selected on three predefined criteria. Extensive experiments have been conducted on a real-life tweet dataset to verify the effectiveness of our method.
基金supported by grants from the National Natural Science Foundation of China[grant numbers 41830645,41971331].
文摘The rising prosperity of Location-based Social Networks(LBSNs)witnessed an explosion in the availability of geo-tagged social media data,which enables tremendous location-aware online services,especially next point of interest(POI)recommendation.However,previous next POI recommendation studies usually adopt fix-length time windows for user check-in sequence modeling,leading to a limited capacity in capturing fine-grained user temporal preferences that easily change over time.Besides,existing methods often directly leverage multi-modal contexts as auxiliary to alleviate the data sparsity issue,which fails to fully exploit the sequential patterns of contextual information for inferring user interest drift.To address the above challenges,we propose a novel framework named iTourSPOT which extends traditional collaborative filtering methods with a context-aware POI embedding architecture.For enhancing temporal interests modeling capacity,we associate the context feature extraction with varying-length sessions and incorporate check-in frequencies of POIs as prior knowledge to instruct the session representation learning of our model.Moreover,a collaborative sequence transduction model is designed for joint context sequence modeling and session-based POI recommendation.Experimental results on a real-world geo-tagged photo dataset clearly demonstrate the effectiveness of the proposed framework when compared with state-of-the-art baseline methods,especially in both sparse and cold-start scenarios.
基金supported by the National Key Project of Scientific and Technical Supporting Programs of China(2014BAK15B01)
文摘With the rapid development of location-based networks, point-of-interest(POI) recommendation has become an important means to help people discover interesting and attractive locations, especially when users travel out of town. However, because users only check-in interaction is highly sparse, which creates a big challenge for POI recommendation. To tackle this challenge, we propose a joint probabilistic generative model called geographical temporal social content popularity(GTSCP) to imitate user check-in activities in a process of decision making, which effectively integrates the geographical influence, temporal effect, social correlation, content information and popularity impact factors to overcome the data sparsity, especially for out-of-town users. Our proposed the GTSCP supports two recommendation scenarios in a joint model, i.e., home-town recommendation and out-of-town recommendation. Experimental results show that GTSCP achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques.
基金supported by the National Key Project of Scientific and Technical Supporting Programs of China (2014BAH26F00)
文摘The rapid development of location-based social networks(LBSNs) has provided an unprecedented opportunity for better location-based services through point-of-interest(POI) recommendation. POI recommendation is personalized, location-aware, and context depended. However, extreme sparsity of user-POI matrix creates a severe challenge. In this paper we propose a textual-geographical-social aware probabilistic matrix factorization method for POI recommendation. Our model is textual-geographical-social aware probabilistic matrix factorization called TGS-PMF, it exploits textual information, geographical information, social information, and incorporates these factors effectively. First, we exploit an aggregated latent Dirichlet allocation(LDA) model to learn the interest topics of users and infer the interest POIs by mining textual information associated with POIs and generate interest relevance score. Second, we propose a kernel estimation method with an adaptive bandwidth to model the geographical correlations and generate geographical relevance score. Third, we build social relevance through the power-law distribution of user social relations to generate social relevance score. Then, our exploit probabilistic matrix factorization model(PMF) to integrate the interest, geographical, social relevance scores for POI recommendation. Finally, we implement experiments on a real LBSN check-in dataset. Experimental results show that TGS-PMF achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques.
文摘With the booming of the Internet of Things(Io T)and the speedy advancement of Location-Based Social Networks(LBSNs),Point-Of-Interest(POI)recommendation has become a vital strategy for supporting people’s ability to mine their POIs.However,classical recommendation models,such as collaborative filtering,are not effective for structuring POI recommendations due to the sparseness of user check-ins.Furthermore,LBSN recommendations are distinct from other recommendation scenarios.With respect to user data,a user’s check-in record sequence requires rich social and geographic information.In this paper,we propose two different neural-network models,structural deep network Graph embedding Neural-network Recommendation system(SG-Neu Rec)and Deepwalk on Graph Neural-network Recommendation system(DG-Neu Rec)to improve POI recommendation.combined with embedding representation from social and geographical graph information(called SG-Neu Rec and DG-Neu Rec).Our model naturally combines the embedding representations of social and geographical graph information with user-POI interaction representation and captures the potential user-POI interactions under the framework of the neural network.Finally,we compare the performances of these two models and analyze the reasons for their differences.Results from comprehensive experiments on two real LBSNs datasets indicate the effective performance of our model.