The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,whi...The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,which use elec-trons as information carriers and possess von Neumann architecture featured by physical separation of storage and pro-cessing.The scaling of computing speed is limited not only by data transfer between memory and processing units,but also by RC delay associated with integrated circuits.Moreover,excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling.Using photons as information carriers is a promising alternative.Owing to the weak third-order optical nonlinearity of conventional materials,building integrated photonic com-puting chips under traditional von Neumann architecture has been a challenge.Here,we report a new all-optical comput-ing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks.The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed“weight modulators”to enable complete phase and amplitude control in each waveguide branch.The generic device concept can be used for equation solving,multifunctional logic operations as well as many other mathematical operations.Multiple computing functions including transcendental equation solvers,multifarious logic gate operators,and half-adders were experimentally demonstrated to validate the all-optical computing performances.The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit.Our approach can be further expan-ded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing.展开更多
All-optical network,as a new backbone network,is featured with high speed and large capacity transmission.It may be out of order due to various faults while providing high-performance transmission service,thus more ef...All-optical network,as a new backbone network,is featured with high speed and large capacity transmission.It may be out of order due to various faults while providing high-performance transmission service,thus more effective fault repairing methods are required.A routing and wavelength assignment method based on SDN is designed and analyzed from the perspective of service function chaining in this paper.A multi-objective integer linear programming model based on impairment-aware and scheduling time is constructed by combining the unified control of control plane with the resource allocation mode of service function virtualization.Meanwhile,an improved Firefly Algorithm is adopted to solve the model for obtaining a better scheduling scheme,so as to the resources are allocated on-demand in a more flexible and efficient way,which effectively improved the self-recovery capability of the network.In the simulation experiments,Through the comparison between the method proposed and methods based on centralization and distribution,method proposed in the paper is superior to the compared ones in the indexes of survivability,blocking probability,link recovery time,and presents a better scheduling performance,makes the system has stronger ability of self-healing in the face of failure.展开更多
Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical...Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical Network(SAON) becomes a promising paradigm. In this paper, the related space optical communications and network programs around the world are first briefly introduced. Then the intelligent Space All-Optical Network(i-SAON), which can be deemed as an advanced SAON, is illustrated, with the emphasis on its features of high survivability, sensing and reconfiguration intelligence, and large capacity for all optical load and switching. Moreover, some key technologies for i-SAON are described, including the rapid adjustment and control of the laser beam direction, the deep learning-based multi-path anti-fault routing, the intelligent multi-fault diagnosis and switching selection mechanism, and the artificial intelligence-based spectrum sensing and situational forecasting.展开更多
A new hybrid WDM/TDM passive optical network (PON) implemented by using all-optical wavelength converters (AOWCs) is proposed. The AOWCs are based on the cross-gain modulation (XGM) effect of the semiconductor o...A new hybrid WDM/TDM passive optical network (PON) implemented by using all-optical wavelength converters (AOWCs) is proposed. The AOWCs are based on the cross-gain modulation (XGM) effect of the semiconductor optical amplifier (SOA). Moreover, the feasibility of this sys- tem is experimentally demonstrated by evaluating the impacts of the optical wavelength conversion, time domain waveforms, eye diagrams and bit-error-rate (BER) in AOWC. The results show that the proposal will be a promising solution for the next generation access networks.展开更多
General multi-protocol label switching(GMPLS) based on traffic engineering is one of the possible methods to implement all-optical network. This method implements the network with IP technique and guarantees the quali...General multi-protocol label switching(GMPLS) based on traffic engineering is one of the possible methods to implement all-optical network. This method implements the network with IP technique and guarantees the quality of service with traffic engineering. Based on the establishment of selecting schemes of optical path and methods of traffic calculation, the wavelength routing algorithm of all-optical network based on traffic engineering is presented by combining with prior route of shortest path and traffic engineering, the algorithm procedures are given, and the actual examples are introduced as well as the analysis on simulation calculation. This research results have certain significance for the achievement of optical switching technique of all-optical network.展开更多
The present study is related to design a stochastic framework for the numerical treatment of the Van der Pol heartbeat model(VP-HBM)using the feedforward artificial neural networks(ANNs)under the optimization of parti...The present study is related to design a stochastic framework for the numerical treatment of the Van der Pol heartbeat model(VP-HBM)using the feedforward artificial neural networks(ANNs)under the optimization of particle swarm optimization(PSO)hybridized with the active-set algorithm(ASA),i.e.,ANNs-PSO-ASA.The global search PSO scheme and local refinement of ASA are used as an optimization procedure in this study.An error-based merit function is defined using the differential VP-HBM form as well as the initial conditions.The optimization of the merit function is accomplished using the hybrid computing performances of PSO-ASA.The designed performance of ANNs-PSO-ASA is implemented for the numerical treatment of the VP-HBM dynamics by fluctuating the pulse shape adjustment terms,external forcing factor and damping coefficient with fixed ventricular contraction period.To perform the correctness of the present scheme,the obtained numerical results through the designed ANN-PSO-ASA will be compared with the Adams numerical method.The statistical investigations with larger dataset are provided using the“mean absolute deviation”,“Theil’s inequality coefficient”and“variance account for”operators to perform the applicability,reliability,and effectiveness of the designed ANNs-PSO-ASA scheme for solving the VP-HBM.展开更多
Fault detection in optical burst switching (OBS) networks will be a challenging task in the future. A novel mechanism based on probe burst (PB) and a new key concept is proposed to detect faults of OBS networks by...Fault detection in optical burst switching (OBS) networks will be a challenging task in the future. A novel mechanism based on probe burst (PB) and a new key concept is proposed to detect faults of OBS networks by sampling the health of data channels, which solve the difficulty of optical monitoring schemes while keeps the transparency of data network to Internet protocol (IP) packets. It takes full advantage of the characteristics of OBS, including architecture and signalling scheme, and introduces the excellent performances of single-hop-test used in electrical communication networks into OBS environment while avoids the shortcoming that any optical burst must undergo an optical-electric-optical (OEO) conversion. Well designed PB can provide exact criterion for judging whether protection/restoration should be excuted according to hard or soft fault identification.展开更多
In a translucent network scenario, development of an optical control plane (OCP) that is aware of the location and number of available regenerators and all-optical wavelength converters (AOWCs) is of paramount importa...In a translucent network scenario, development of an optical control plane (OCP) that is aware of the location and number of available regenerators and all-optical wavelength converters (AOWCs) is of paramount importance. However, current generalized multiprotocol label switching (GMPLS) protocol suite does not consider the distribution of regenerator and AOWC availability information to all the network nodes. In this paper, we propose a novel optical control plane (OCP) architecture that 1) disseminates information about network components (i.e. regenerators and AOWCs) to all the network nodes, and 2) evaluates candidate routes which use fewest amounts of network components. Performance of the proposed OCP is compared with a recently proposed hybrid OCP approach in terms of blocking performance, number of deployed components and lightpath establishment setup times. The obtained simulation results show that the proposed OCP approach demonstrates low connection blocking and establishes lightpaths by 1) minimizing the overall network cost owing to the deployment of minimum total number of network components, and 2) demonstrating acceptable lightpath establishment setup times at all traffic loads. Further, the proposed OCP methodology is compatible and suitable for controlling the operations of a novel electro-optical hybrid translucent node which is a latency efficient technology capable of delivering a cost effective implementation suitable for large scale deployment.展开更多
The explosion in the amount of information that is being processed is prompting the need for new computing systems beyond existing electronic computers.Photonic computing is emerging as an attractive alternative due t...The explosion in the amount of information that is being processed is prompting the need for new computing systems beyond existing electronic computers.Photonic computing is emerging as an attractive alternative due to performing calculations at the speed of light,the change for massive parallelism,and also extremely low energy consumption.We review the physical implementation of basic optical calculations,such as differentiation and integration,using metamaterials,and introduce the realization of all-optical artificial neural networks.We start with concise introductions of the mathematical principles behind such optical computation methods and present the advantages,current problems that need to be overcome,and the potential future directions in the field.We expect that our review will be useful for both novice and experienced researchers in the field of all-optical computing platforms using metamaterials.展开更多
A heuristic algorithm of establishing a minimum coding nodes multicast tree on which a two-channel all-optical network coding scheme can be performed is presented. To minimize the coding nodes, the heuristic graph-sea...A heuristic algorithm of establishing a minimum coding nodes multicast tree on which a two-channel all-optical network coding scheme can be performed is presented. To minimize the coding nodes, the heuristic graph-search control strategies are investigated. Firstly, a minimum relatedness principle is proposed to balance and minimize the out-degrees of the conventionally directed multicast tree. Secondly, a set of rules about bottom-up path search are presented to recover another path in the conventionally directed multicast tree, and a conflict-backtracking principle is given to minimize the coding nodes in this process. To evaluate the algorithm, some results are given. The results indicate that the algorithm can perform the expected function. Moreover, to further test and verify the algorithm, performances of different multicast modes are compared and analyzed. The results show that the multicast performances will be impaired if a multicast tree contains redundant coding nodes.展开更多
In the feld of information processing,all-optical routers are signifcant for achieving high-speed,high-capacity signal processing and transmission.In this study,we developed three types of structurally simple and fexi...In the feld of information processing,all-optical routers are signifcant for achieving high-speed,high-capacity signal processing and transmission.In this study,we developed three types of structurally simple and fexible routers using the deep difractive neural network(D2 NN),capable of routing incident light based on wavelength and polarization.First,we implemented a polarization router for routing two orthogonally polarized light beams.The second type is the wavelength router that can route light with wavelengths of 1550,1300,and 1100 nm,demonstrating outstanding performance with insertion loss as low as 0.013 dB and an extinction ratio of up to 18.96 dB,while also maintaining excellent polarization preservation.The fnal router is the polarization-wavelength composite router,capable of routing six types of input light formed by pairwise combinations of three wavelengths(1550,1300,and 1100 nm)and two orthogonal linearly polarized lights,thereby enhancing the information processing capability of the device.These devices feature compact structures,maintaining high contrast while exhibiting low loss and passive characteristics,making them suitable for integration into future optical components.This study introduces new avenues and methodologies to enhance performance and broaden the applications of future optical information processing systems.展开更多
Network coding brings many benefits for multicast networks. It is necessary to introduce network coding into optical networks. Nevertheless, the traditional network coding scheme is hard to be implemented in optical n...Network coding brings many benefits for multicast networks. It is necessary to introduce network coding into optical networks. Nevertheless, the traditional network coding scheme is hard to be implemented in optical networks because of the weak operation capability in photonic domain. In the paper, we focused on realizing two-channel network coding in all-optical multicast networks. An optical network coding scheme which can be realized via logic shift and logic XOR operations in photonic domain was proposed. Moreover, to perform the network coding scheme the coding node structure was designed and the operation principle and processes were illustrated in detail. In the end of the paper, the performance and the cost of different all-optical multicast mode were compared and analyzed.展开更多
Wavelength division multiplexing (WDM) has been becoming a promising solution to meet the rapidly growing demands on bandwidth. Multicast in WDM networks by employing free wavelength is an efficient approach to savi...Wavelength division multiplexing (WDM) has been becoming a promising solution to meet the rapidly growing demands on bandwidth. Multicast in WDM networks by employing free wavelength is an efficient approach to saving bandwidth and cost. However, the free wavelength may not identical between different hops in a multicast light-path, particularly in heavy load optical WDM networks. In order to implement multicast applications efficiently, a network coding (NC) technique was introduced into all-optical WDM multicast networks to solve wavelength collision problem between the multicast request and the unicast request. Compared with the wavelength conversion based optical multicast, the network coding based optical multicast can achieve better multicast performance with paying lower cost.展开更多
We have studied the algorithm for the automatic chromatic dispersion compensation using bit error rate (BER) and Q-factor optimization for realization of dynamically reconfigurable all-optical .network. We have made s...We have studied the algorithm for the automatic chromatic dispersion compensation using bit error rate (BER) and Q-factor optimization for realization of dynamically reconfigurable all-optical .network. We have made sure good performance using the compensation system by laboratory experiments.展开更多
基金financial supports from the National Key Research and Development Program of China(2018YFB2200403)National Natural Sci-ence Foundation of China(NSFC)(61775003,11734001,91950204,11527901,11604378,91850117).
文摘The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,which use elec-trons as information carriers and possess von Neumann architecture featured by physical separation of storage and pro-cessing.The scaling of computing speed is limited not only by data transfer between memory and processing units,but also by RC delay associated with integrated circuits.Moreover,excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling.Using photons as information carriers is a promising alternative.Owing to the weak third-order optical nonlinearity of conventional materials,building integrated photonic com-puting chips under traditional von Neumann architecture has been a challenge.Here,we report a new all-optical comput-ing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks.The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed“weight modulators”to enable complete phase and amplitude control in each waveguide branch.The generic device concept can be used for equation solving,multifunctional logic operations as well as many other mathematical operations.Multiple computing functions including transcendental equation solvers,multifarious logic gate operators,and half-adders were experimentally demonstrated to validate the all-optical computing performances.The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit.Our approach can be further expan-ded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing.
基金supported by the National Science and Technology Major Project(No.2016ZX03001023-005)National Natural Science Foundation of China(No.61403109)+2 种基金China Postdoctoral Science Foundation(No.2019M651263)Scientific Research Fund of Heilongjiang Provincial Education Department(No.12541169)Natural Science Foundation of Heilongjiang Province(No.F2017015)。
文摘All-optical network,as a new backbone network,is featured with high speed and large capacity transmission.It may be out of order due to various faults while providing high-performance transmission service,thus more effective fault repairing methods are required.A routing and wavelength assignment method based on SDN is designed and analyzed from the perspective of service function chaining in this paper.A multi-objective integer linear programming model based on impairment-aware and scheduling time is constructed by combining the unified control of control plane with the resource allocation mode of service function virtualization.Meanwhile,an improved Firefly Algorithm is adopted to solve the model for obtaining a better scheduling scheme,so as to the resources are allocated on-demand in a more flexible and efficient way,which effectively improved the self-recovery capability of the network.In the simulation experiments,Through the comparison between the method proposed and methods based on centralization and distribution,method proposed in the paper is superior to the compared ones in the indexes of survivability,blocking probability,link recovery time,and presents a better scheduling performance,makes the system has stronger ability of self-healing in the face of failure.
基金supported by CAST Fund for Distinguished Young TalentsCASC Scientific and Technological Innovative Research and Design Projects
文摘Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical Network(SAON) becomes a promising paradigm. In this paper, the related space optical communications and network programs around the world are first briefly introduced. Then the intelligent Space All-Optical Network(i-SAON), which can be deemed as an advanced SAON, is illustrated, with the emphasis on its features of high survivability, sensing and reconfiguration intelligence, and large capacity for all optical load and switching. Moreover, some key technologies for i-SAON are described, including the rapid adjustment and control of the laser beam direction, the deep learning-based multi-path anti-fault routing, the intelligent multi-fault diagnosis and switching selection mechanism, and the artificial intelligence-based spectrum sensing and situational forecasting.
文摘A new hybrid WDM/TDM passive optical network (PON) implemented by using all-optical wavelength converters (AOWCs) is proposed. The AOWCs are based on the cross-gain modulation (XGM) effect of the semiconductor optical amplifier (SOA). Moreover, the feasibility of this sys- tem is experimentally demonstrated by evaluating the impacts of the optical wavelength conversion, time domain waveforms, eye diagrams and bit-error-rate (BER) in AOWC. The results show that the proposal will be a promising solution for the next generation access networks.
基金National Key Lab of Broad Band Fiber Transmission and Communication System Technology , Ministry ofEducation
文摘General multi-protocol label switching(GMPLS) based on traffic engineering is one of the possible methods to implement all-optical network. This method implements the network with IP technique and guarantees the quality of service with traffic engineering. Based on the establishment of selecting schemes of optical path and methods of traffic calculation, the wavelength routing algorithm of all-optical network based on traffic engineering is presented by combining with prior route of shortest path and traffic engineering, the algorithm procedures are given, and the actual examples are introduced as well as the analysis on simulation calculation. This research results have certain significance for the achievement of optical switching technique of all-optical network.
基金This research received funding support from the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(Grant Number B05F640088).
文摘The present study is related to design a stochastic framework for the numerical treatment of the Van der Pol heartbeat model(VP-HBM)using the feedforward artificial neural networks(ANNs)under the optimization of particle swarm optimization(PSO)hybridized with the active-set algorithm(ASA),i.e.,ANNs-PSO-ASA.The global search PSO scheme and local refinement of ASA are used as an optimization procedure in this study.An error-based merit function is defined using the differential VP-HBM form as well as the initial conditions.The optimization of the merit function is accomplished using the hybrid computing performances of PSO-ASA.The designed performance of ANNs-PSO-ASA is implemented for the numerical treatment of the VP-HBM dynamics by fluctuating the pulse shape adjustment terms,external forcing factor and damping coefficient with fixed ventricular contraction period.To perform the correctness of the present scheme,the obtained numerical results through the designed ANN-PSO-ASA will be compared with the Adams numerical method.The statistical investigations with larger dataset are provided using the“mean absolute deviation”,“Theil’s inequality coefficient”and“variance account for”operators to perform the applicability,reliability,and effectiveness of the designed ANNs-PSO-ASA scheme for solving the VP-HBM.
基金Supported by the National Natural Science Foundation of China ( No. 90304004), High Technology Research and Development Program of China ( No 2005AA122310), the Projects of the Science and Technology Council of Chongqing (2005BB2062, 2005AC2089).
文摘Fault detection in optical burst switching (OBS) networks will be a challenging task in the future. A novel mechanism based on probe burst (PB) and a new key concept is proposed to detect faults of OBS networks by sampling the health of data channels, which solve the difficulty of optical monitoring schemes while keeps the transparency of data network to Internet protocol (IP) packets. It takes full advantage of the characteristics of OBS, including architecture and signalling scheme, and introduces the excellent performances of single-hop-test used in electrical communication networks into OBS environment while avoids the shortcoming that any optical burst must undergo an optical-electric-optical (OEO) conversion. Well designed PB can provide exact criterion for judging whether protection/restoration should be excuted according to hard or soft fault identification.
文摘In a translucent network scenario, development of an optical control plane (OCP) that is aware of the location and number of available regenerators and all-optical wavelength converters (AOWCs) is of paramount importance. However, current generalized multiprotocol label switching (GMPLS) protocol suite does not consider the distribution of regenerator and AOWC availability information to all the network nodes. In this paper, we propose a novel optical control plane (OCP) architecture that 1) disseminates information about network components (i.e. regenerators and AOWCs) to all the network nodes, and 2) evaluates candidate routes which use fewest amounts of network components. Performance of the proposed OCP is compared with a recently proposed hybrid OCP approach in terms of blocking performance, number of deployed components and lightpath establishment setup times. The obtained simulation results show that the proposed OCP approach demonstrates low connection blocking and establishes lightpaths by 1) minimizing the overall network cost owing to the deployment of minimum total number of network components, and 2) demonstrating acceptable lightpath establishment setup times at all traffic loads. Further, the proposed OCP methodology is compatible and suitable for controlling the operations of a novel electro-optical hybrid translucent node which is a latency efficient technology capable of delivering a cost effective implementation suitable for large scale deployment.
文摘随着信息化的发展,企业网络架构也在不断变革。面对流量和用户快速增长等多重挑战,企业传统交换机的网络架构已经无法满足需求,因此需要引入全新的全光网络组网方式。通过对比分析无源光局域网(Passive Optical LAN,POL)与局域网(Local Area Network,LAN)的网络架构,阐述POL全光网络的优势与园区场景中2种组网方式的对比,探讨多场景下的全光网络解决方案,为POL全光网络相关领域的发展提供参考。
基金POSCO and the National Research Foundation(NRF)(Grant Nos.NRF-2022M3C1A3081312,NRF-2022M3H4A1A02074314,NRF-2022M3H4A1A02085335,CAMM-2019M3A6B3030637,and NRF-2019R1A5A8080290)funded by the Ministry of Science and ICT,Republic of Korea.
文摘The explosion in the amount of information that is being processed is prompting the need for new computing systems beyond existing electronic computers.Photonic computing is emerging as an attractive alternative due to performing calculations at the speed of light,the change for massive parallelism,and also extremely low energy consumption.We review the physical implementation of basic optical calculations,such as differentiation and integration,using metamaterials,and introduce the realization of all-optical artificial neural networks.We start with concise introductions of the mathematical principles behind such optical computation methods and present the advantages,current problems that need to be overcome,and the potential future directions in the field.We expect that our review will be useful for both novice and experienced researchers in the field of all-optical computing platforms using metamaterials.
基金supported the National Natural Science Foundation of China (1171103)the Doctoral Research Fund of Shandong University of Technology (4041-411023)
文摘A heuristic algorithm of establishing a minimum coding nodes multicast tree on which a two-channel all-optical network coding scheme can be performed is presented. To minimize the coding nodes, the heuristic graph-search control strategies are investigated. Firstly, a minimum relatedness principle is proposed to balance and minimize the out-degrees of the conventionally directed multicast tree. Secondly, a set of rules about bottom-up path search are presented to recover another path in the conventionally directed multicast tree, and a conflict-backtracking principle is given to minimize the coding nodes in this process. To evaluate the algorithm, some results are given. The results indicate that the algorithm can perform the expected function. Moreover, to further test and verify the algorithm, performances of different multicast modes are compared and analyzed. The results show that the multicast performances will be impaired if a multicast tree contains redundant coding nodes.
基金supported by the National Natural Science Foundation of China(Grant Nos.11734001,11704017,91950204,92150302,12274478,and 61775244)the National Key Research and Development Program of China(Nos.2018YFB2200403,2021YFB2800604,and 2021YFB2800302)the Natural Science Foundation of Beijing Municipality(No.Z180015).
文摘In the feld of information processing,all-optical routers are signifcant for achieving high-speed,high-capacity signal processing and transmission.In this study,we developed three types of structurally simple and fexible routers using the deep difractive neural network(D2 NN),capable of routing incident light based on wavelength and polarization.First,we implemented a polarization router for routing two orthogonally polarized light beams.The second type is the wavelength router that can route light with wavelengths of 1550,1300,and 1100 nm,demonstrating outstanding performance with insertion loss as low as 0.013 dB and an extinction ratio of up to 18.96 dB,while also maintaining excellent polarization preservation.The fnal router is the polarization-wavelength composite router,capable of routing six types of input light formed by pairwise combinations of three wavelengths(1550,1300,and 1100 nm)and two orthogonal linearly polarized lights,thereby enhancing the information processing capability of the device.These devices feature compact structures,maintaining high contrast while exhibiting low loss and passive characteristics,making them suitable for integration into future optical components.This study introduces new avenues and methodologies to enhance performance and broaden the applications of future optical information processing systems.
基金supported by the National Natural Science Foundation of China (61171103)the Doctoral Research Fund of Shandong University of Technology (4041-411023)
文摘Network coding brings many benefits for multicast networks. It is necessary to introduce network coding into optical networks. Nevertheless, the traditional network coding scheme is hard to be implemented in optical networks because of the weak operation capability in photonic domain. In the paper, we focused on realizing two-channel network coding in all-optical multicast networks. An optical network coding scheme which can be realized via logic shift and logic XOR operations in photonic domain was proposed. Moreover, to perform the network coding scheme the coding node structure was designed and the operation principle and processes were illustrated in detail. In the end of the paper, the performance and the cost of different all-optical multicast mode were compared and analyzed.
基金supported by the Doctor Foundation of Shandong Province (BS2013DX032)the Youth Scholars Development Program of Shandong University of Technology
文摘Wavelength division multiplexing (WDM) has been becoming a promising solution to meet the rapidly growing demands on bandwidth. Multicast in WDM networks by employing free wavelength is an efficient approach to saving bandwidth and cost. However, the free wavelength may not identical between different hops in a multicast light-path, particularly in heavy load optical WDM networks. In order to implement multicast applications efficiently, a network coding (NC) technique was introduced into all-optical WDM multicast networks to solve wavelength collision problem between the multicast request and the unicast request. Compared with the wavelength conversion based optical multicast, the network coding based optical multicast can achieve better multicast performance with paying lower cost.
文摘We have studied the algorithm for the automatic chromatic dispersion compensation using bit error rate (BER) and Q-factor optimization for realization of dynamically reconfigurable all-optical .network. We have made sure good performance using the compensation system by laboratory experiments.