The host structure of polymers significantly influences ion transport and interfacial stability of electrolytes,dictating battery cycle life and safety for solid-state lithium metal batteries.Despite promising propert...The host structure of polymers significantly influences ion transport and interfacial stability of electrolytes,dictating battery cycle life and safety for solid-state lithium metal batteries.Despite promising properties of ethylene oxide-based electrolytes,their typical clamp-like coordination geometry leads to crowd solvation sheath and overly strong interactions between Li^(+)and electrolytes,rendering difficult dissociation of Li+and unfavorable solid electrolyte interface(SEI).Herein,we explore weakly solvating characteristics of polyacetal electrolytes owing to their alternately changing intervals between–O–coordinating sites in the main chain.Such structural asymmetry leads to unique distorted helical solvation sheath,and can effectively reduce Li^(+)-electrolyte binding and tune Li^(+)desolvation kinetics in the insitu formed polymer electrolytes,yielding anion-derived SEI and dendrite-free Li electrodeposition.Combining with photoinitiated cationic ring-opening polymerization,polyacetal electrolytes can be instantly formed within 5 min at the surface of electrode,with high segmental chain motion and well adapted interfaces.Such in-situ polyacetal electrolytes enabled more than 1300-h of stable lithium electrodeposition and prolonged cyclability over 200 cycles in solid-state batteries at ambient temperatures,demonstrating the vital role of molecular structure in changing solvating behavior and Li deposition stability for high-performance electrolytes.展开更多
The purpose of this article is to propose the idea of "a partial stability constant" for the complex formation of polyamine polyacetic acids with tripositive rare earth ion. Each coordinating group has its own chara...The purpose of this article is to propose the idea of "a partial stability constant" for the complex formation of polyamine polyacetic acids with tripositive rare earth ion. Each coordinating group has its own characteristic stability constant,i.e.,"the partial stability constant" and simple numerical addition can be used among the partial logarithm of the stability constant(PLSC), for explanation of the total stability constants. The structures of the rare earth-diethylenetriamine-N,N,N',N',N"-pentaacetic acid(DTPA)complexes in aqueous solution has been discussed from the point of PLSC.展开更多
基金financially supported by National Natural Science Foundation of China(52003231,22065037)Yunnan Fundamental Research Projects(202201AW070015)。
文摘The host structure of polymers significantly influences ion transport and interfacial stability of electrolytes,dictating battery cycle life and safety for solid-state lithium metal batteries.Despite promising properties of ethylene oxide-based electrolytes,their typical clamp-like coordination geometry leads to crowd solvation sheath and overly strong interactions between Li^(+)and electrolytes,rendering difficult dissociation of Li+and unfavorable solid electrolyte interface(SEI).Herein,we explore weakly solvating characteristics of polyacetal electrolytes owing to their alternately changing intervals between–O–coordinating sites in the main chain.Such structural asymmetry leads to unique distorted helical solvation sheath,and can effectively reduce Li^(+)-electrolyte binding and tune Li^(+)desolvation kinetics in the insitu formed polymer electrolytes,yielding anion-derived SEI and dendrite-free Li electrodeposition.Combining with photoinitiated cationic ring-opening polymerization,polyacetal electrolytes can be instantly formed within 5 min at the surface of electrode,with high segmental chain motion and well adapted interfaces.Such in-situ polyacetal electrolytes enabled more than 1300-h of stable lithium electrodeposition and prolonged cyclability over 200 cycles in solid-state batteries at ambient temperatures,demonstrating the vital role of molecular structure in changing solvating behavior and Li deposition stability for high-performance electrolytes.
文摘The purpose of this article is to propose the idea of "a partial stability constant" for the complex formation of polyamine polyacetic acids with tripositive rare earth ion. Each coordinating group has its own characteristic stability constant,i.e.,"the partial stability constant" and simple numerical addition can be used among the partial logarithm of the stability constant(PLSC), for explanation of the total stability constants. The structures of the rare earth-diethylenetriamine-N,N,N',N',N"-pentaacetic acid(DTPA)complexes in aqueous solution has been discussed from the point of PLSC.