期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Transcriptomic analysis reveals the effects of maternal exposure to bisphenol AF on hypothalamic development in male neonatal mice
1
作者 Lin Lv Yuanyuan Li +1 位作者 Xuanyue Chen Zhanfen Qin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第7期304-313,共10页
Fragmented data suggest that bisphenol AF(BPAF),a chemical widely used in a variety of products,might have potential impacts on the hypothalamus.Here,we employed male neonatal mice following maternal exposure to explo... Fragmented data suggest that bisphenol AF(BPAF),a chemical widely used in a variety of products,might have potential impacts on the hypothalamus.Here,we employed male neonatal mice following maternal exposure to explore the effects of low-dose BPAF on hypothalamic development by RNA-sequencing.We found that maternal exposure to approximately 50μg/(kg·day)BPAF from postanal day(PND)0 to PND 15 altered the hypothalamic transcriptome,primarily involving the pathways and genes associated with extracellular matrix(ECM)and intercellular adhesion,neuroendocrine regulation,and neurological processes.Further RNA analysis confirmed the changes in the expression levels of concerned genes.Importantly,we further revealed that low-dose BPAF posed a stimulatory impact on pro-opiomelanocortin(POMC)neurons in the arcuate nucleus of the hypothalamus and induced the browning of inguinal white adipose tissue.All findings indicate that developmental exposure to low-dose BPAF could interfere with hypothalamic development and thereby lead to alterations in the metabolism.Interestingly,5000μg/(kg·day)BPAF caused slighter,non-significant or even inverse alterations than the low dose of 50μg/(kg·day),displaying a dose-independent effect.Further observations suggest that the the dose-independent effects of BPAF might be associated with oxidative stress and inflammatory responses caused by the high dose.Overall,our study highlights a risk of low-dose BPAF to human neuroendocrine regulation and metabolism. 展开更多
关键词 Bisphenol AF HYPOTHALAMUS Transcriptomic alteration Pro-opiomelanocortin(pomc)neurons White adipose tissue browning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部