期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Biogas Production from POME by Optimum Level of Inputs
1
作者 Mamunur Rashid Nazmus Shakib Tamjidur Rahman 《Smart Grid and Renewable Energy》 2019年第8期203-212,共10页
The purpose of this research is to optimize biogas production from POME by using anaerobic reactor with various Organic Loading Rate, Carbon-Nitrogen ratio and Hydraulic Retention Time. For conducting this research, a... The purpose of this research is to optimize biogas production from POME by using anaerobic reactor with various Organic Loading Rate, Carbon-Nitrogen ratio and Hydraulic Retention Time. For conducting this research, a two-stage fermentation anaerobic bioreactor has used at OLR rate1, 2.6, 5, 9 and 11 g/L.d;at C/N ratio 14.54, 20, 28, 36, 41.454;at HRT 2.295, 4, 6.5, 9, 10.70 days. The anaerobic bioreactor is operated for 30 days. The finding of this research demonstrates the optimum input values are OLR is 5 (g/L.d), C/N is 28, HRT is 6.5 days and output of Biogas is 3.8 L/d from POME. This finding will bring benefits to palm oil industries in achieving economic and environmental sustainability. This research concludes that in-depth research into this matter is important to implement this technology in the palm oil industry. 展开更多
关键词 pome-palm Oil Mill Effluent OLR-Organic Loading Rate C/N-Carbon Nitrogen Ratio HRT-Hydraulic Retention Time BOD-Biochemical OXYGEN DEMAND COD-Chemical OXYGEN DEMAND GHG-Greenhouse Gas
下载PDF
Removal of phenol by activated carbons prepared from palm oil mill effluent sludge 被引量:3
2
作者 Md. Zahangir ALAM Suleyman A. MUYIBI +1 位作者 Mariatul F. MANSOR Radziah WAHID 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第3期446-452,共7页
The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of act... The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of activation were followed, namely, thermal activation at 300, 500 and 800%, and physical activation at 150% (boiling treatment). A control (raw POME sludge) was used to compare the adsorption capacity of the activated carbons produced. The results indicated that the activation temperature of 800℃ showed maximum absorption capacity by the activated carbon (POME 800) in aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon of POME 800. It was observed that the adsorption capacity was higher at lower values ofpH (2--3) and higher value of initial concentration of phenol (200--300 mg/L), The equilibrium data were fitted by the Langmuir and Freundlich adsorption isotherms. The adsorption of phenol onto the activated carbon POME 800 was studied in terms of pseudo-first and second order kinetics to predict the rate constant and equilibrium capacity with the effect of initial phenol concentrations. The rate of adsorption was found to be better correlation for the pseudo-second order kinetics compared to the first order kinetics. 展开更多
关键词 activated carbon ADSORPTION palm oil mill effluent (POME) sludge PHENOL
下载PDF
A Study on Zeolite Performance in Waste Treating Ponds for Treatment of Palm Oil Mill Effluent 被引量:1
3
作者 M. Halim Shah Ismail Shazryenna Dalang +1 位作者 Syafiie Syam Shamsul Izhar 《Journal of Water Resource and Protection》 2013年第7期18-27,共10页
Oil palm currently occupies the largest acreage of farm land in Malaysia. In 2011, the production of palm oil in Malaysia was recorded as 19.8 million tons which has led to a huge amount of wastewater known as palm oi... Oil palm currently occupies the largest acreage of farm land in Malaysia. In 2011, the production of palm oil in Malaysia was recorded as 19.8 million tons which has led to a huge amount of wastewater known as palm oil mill effluent (POME). This work focuses on the ponding system which acts as wastewater treatment plant in order to treat POME. The conventional ponding system applied in mills consists of a series of seven ponds. The maintenance costs of the pond are expensive thus study of alternative methods is needed. POME treatment using zeolite shows a potential to overcome the problem. Samples collected from selected ponds are tested and analyzed using water analyzer method. Result from adsorption by zeolite shows a significant reduction of COD, BOD, Fe, Zn, Mn and turbidity. This shows that zeolite is highly potential to be applied as adsorbent in the POME treatment plants. The results here may lead to lower maintenance cost, lower quantity of treatment ponds and lesser land occupied for the treatment of POME in Malaysia. 展开更多
关键词 Palm Oil Mill EFFLUENT (POME) Zeolite Wastewater TREATMENT
下载PDF
Optimization of thermophilic anaerobic-aerobic treatment system for Palm Oil Mill Effluent (POME) 被引量:1
4
作者 Yijing CHAN Meifong CHONG Chunglim LAW 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2015年第2期334-351,共18页
Optimization of an integrated anaerobic-aero- bic bioreactor (IAAB) treatment system for the reduction of organic matter (Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Sus- pended Soli... Optimization of an integrated anaerobic-aero- bic bioreactor (IAAB) treatment system for the reduction of organic matter (Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Sus- pended Solids (TSS) concentrations) in Palm Oil Mill Effluent (POME) to legal standards with high methane yield was performed for the first time under thermophilic condition (50~C-55~C) by using response surface meth- odology (RSM). The experiments were conducted based on a central composite rotatable design (CCRD) with three independent operating variables, organic loading rates in anaerobic compartment (OLRan) and mixed liquor volatile suspended solids (MLVSS) concentration in anaerobic (MLVSSa,) and aerobic compartments (MLVSSa). The optimum conditions for the POME treatment were determined as OLRan of 15.6 g COD'L-I"d-1, MLVSSan of 43100mg.L l, and MLVSSa of 18600mg.L-1, where high aerobic COD, BOD and TSS removal efficiencies of 96.3%, 97.9%, and 98.5% were achieved with treated BOD of 56mg.L1 and TSS of 28mg.LI meeting the discharge standard. This optimization study successfully achieved a reduction of 42% in the BOD concentrations of the final treated effluent at a 48% higher OLRan as compared to the previous works. Besides, thermophilic IAAB system scores better feasibility and higher effectiveness as compared to the optimized mesophilic system. This is due to its higher ability to handle high OLR with higher overall treatment efficiencies (more than 99.6%), methane yield (0.31 L CH4" gl CODremoved) and purity of methane (67.5%). Hence, these advantages ascertain the applicability ofthermophilic IAAB in the POME treatment or even in other high-strength wastewaters treatment. 展开更多
关键词 palm oil mill effluent (POME) ANAEROBIC AEROBIC THERMOPHILIC BIOGAS OPTIMIZATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部