期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Flash‑Induced High‑Throughput Porous Graphene via Synergistic Photo‑Effects for Electromagnetic Interference Shielding 被引量:3
1
作者 Jin Soo Lee Jeong‑Wook Kim +9 位作者 Jae Hee Lee Yong Koo Son Young Bin Kim Kyoohee Woo Chanhee Lee Il‑Doo Kim Jae Young Seok Jong Won Yu Jung Hwan Park Keon Jae Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期1-18,共18页
Porous 2D materials with high conductivity and large surface area have been proposed for potential electromagnetic interference(EMI)shielding materials in future mobility and wearable applications to prevent signal no... Porous 2D materials with high conductivity and large surface area have been proposed for potential electromagnetic interference(EMI)shielding materials in future mobility and wearable applications to prevent signal noise,transmission inaccuracy,system malfunction,and health hazards.Here,we report on the synthesis of lightweight and flexible flash-induced porous graphene(FPG)with excellent EMI shielding performance.The broad spectrum of pulsed flashlight induces photo-chemical and photo-thermal reactions in polyimide films,forming 5×10 cm^(2)-size porous graphene with a hollow pillar structure in a few milliseconds.The resulting material demonstrated low density(0.0354 g cm^(−3))and outstanding absolute EMI shielding effectiveness of 1.12×10^(5) dB cm^(2) g^(−1).The FPG was characterized via thorough material analyses,and its mechanical durability and flexibility were confirmed by a bending cycle test.Finally,the FPG was utilized in drone and wearable applications,showing effective EMI shielding performance for internal/external EMI in a drone radar system and reducing the specific absorption rate in the human body. 展开更多
关键词 porous graphene Flash lamp Photo-pyrolysis HIGH-THROUGHPUT Electromagnetic interference shielding
下载PDF
Synthesis, Properties and Potential Applications of Porous Graphene: A Review 被引量:12
2
作者 Paola Russo Anming Hu Giuseppe Compagnini 《Nano-Micro Letters》 SCIE EI CAS 2013年第4期260-273,共14页
Since the discovery of graphene, many efforts have been done to modify the graphene structure for integrating this novel material to nanoelectronics, fuel cells, energy storage devices and in many other applications. ... Since the discovery of graphene, many efforts have been done to modify the graphene structure for integrating this novel material to nanoelectronics, fuel cells, energy storage devices and in many other applications. This leads to the production of different types of graphene-based materials, which possess properties different from those of pure graphene. Porous graphene is an example of this type of materials. It can be considered as a graphene sheet with some holes/pores within the atomic plane. Due to its spongy structure, porous graphene can have potential applications as membranes for molecular sieving, energy storage components and in nanoelectronics. In this review, we present the recent progress in the synthesis of porous graphene. The properties and the potential applications of this new material are also discussed. 展开更多
关键词 graphene porous graphene Gas separation Energy storage
下载PDF
In-situ assembly of TiO2 with high exposure of(001)facets on three-dimensional porous graphene aerogel for lithium-sulfur battery 被引量:5
3
作者 Ming Wang Shunyuan Tan +4 位作者 Shuting Kan Yufeng Wu Shangbin Sang Kaiyu Liu Hongtao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期316-322,共7页
Resulting from the development of electric vehicles,high energy-density Li-S batteries have recently attracted ever-increasing attentions worldwide.However,continuous dissolution of cathodic sulfur and followed shuttl... Resulting from the development of electric vehicles,high energy-density Li-S batteries have recently attracted ever-increasing attentions worldwide.However,continuous dissolution of cathodic sulfur and followed shuttle effect of polysulfides lead to very limited service lifetime for currently-applied Li-S batteries.Herein,a 3 D porous graphene aerogel(GA)decorated with high exposure of anatase TiO2(001)nanoplatelets is proposed as robust host to immobilize cathodic sulfur.Compared with commonly used TiO2(101)nanoparticles,the Ti O2(001)nanoplatelets have highly matched lattices with graphene(002)nanosheets,thus facilitating the electronic transfer.The in-site assembled TiO2@GA host exhibits superior sulfur-immobilized capability,which cannot only entrap sulfur by physical confinement,but also capture dissoluble sulfurous species by chemical bonding.The fabricated S@TiO2@GA cathode shows excellent electrochemical performance with high discharge capacity,superior rate capability,and durable cycling stability as well,supposed to be a promising cathode for high-performance Li-S battery applications. 展开更多
关键词 Lithium-sulfur battery porous graphene aerogel Anatase(001) Immobilization of sulfur Electrochemical performance
下载PDF
Ge nanoparticles uniformly immobilized on 3D interconnected porous graphene frameworks as anodes for high-performance lithium-ion batteries 被引量:3
4
作者 Yao Chen Yuming Zou +8 位作者 Xiaoping Shen Jingxia Qiu Jiabiao Lian Jinrui Pu Sheng Li Fei-Hu Du Shang-Qi Li Zhenyuan Ji Aihua Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期161-173,I0005,共14页
Germanium(Ge), an alloy-type anode material for lithium-ion batteries(LIBs), possesses many advantages such as high theoretical capacity and decent electrical conductivity. Nevertheless, its application is restricted ... Germanium(Ge), an alloy-type anode material for lithium-ion batteries(LIBs), possesses many advantages such as high theoretical capacity and decent electrical conductivity. Nevertheless, its application is restricted by tremendous volume variation and tardy reaction kinetic during discharge/charge process.In this paper, the Ge/3DPG composites with Ge nanoparticles uniformly dispersed in 3D interconnected porous graphene(3DPG) skeleton are successfully prepared using a template-assisted in-situ reduction method. The unique 3D interconnected porous graphene can not only enhance the electronic conductivity and reaction kinetics of the materials, but also provide sufficient buffer space to effectively mitigate the volume expansion during cycling and strengthen the structural integrity. Moreover, the small-sized Ge nanoparticles in close conjunction with the 3D graphene can boost the surface-controlled reaction of the electrode, which contributes to a fast charge–discharge rate capability. The Ge/3DPG composite with optimized Ge/graphene mass ratio delivers high reversible specific capacity(1102 mAh g^(-1) after 100 cycles at 0.2 C), outstanding rate capability(494 mAh g^(-1) at 5 C), and admirable cycling stability(85.3% of capacity retention after 250 cycles at 0.5 C). This work provides a significant inspiration for the design and fabrication of advanced Ge-based anode materials for next-generation highperformance LIBs. 展开更多
关键词 Germanium nanoparticles 3D porous graphene Composites Anode materials Lithium storage performance
下载PDF
Laser-induced porous graphene on Polyimide/PDMS composites andits kirigami-inspired strain sensor 被引量:2
5
作者 Hao Wang Zifeng Zhao +1 位作者 Panpan Liu Xiaogang Guo 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第2期110-114,共5页
The laser-induced porous graphene(LIG)prepared in a straightforward fabrication method is presented,and its applications in stretchable strain sensors to detect the applied strain are also explored.The LIGformed on th... The laser-induced porous graphene(LIG)prepared in a straightforward fabrication method is presented,and its applications in stretchable strain sensors to detect the applied strain are also explored.The LIGformed on the polyimide/polydimethylsiloxane(PI/PDMS)composite exhibits a naturally high stretchabil-ity(over 30%),bypassing the transfer printing process compared to the one prepared by laser scribing onPI films.The PI/PDMS composite with LIG shows tunable mechanical and electronic performances withdifferent PI particle concentrations in PDMS.The good cyclic stability and almost linear response of theprepared LIG’s resistance with respect to tensile strain provide its access to wearable electronics.To im-prove the PDMS/PI composite stretchability,we designed and optimized a kirigami-inspired strain sensorwith LIG on the top surface,dramatically increasing the maximum strain value that in linear response toapplied strain from 3%to 79%. 展开更多
关键词 Laser-induced porous graphene Polyimide(PI)/PDMS composite kirigami-inspired strain sensor
下载PDF
Monodisperse polar NiCo_(2)O_(4) nanoparticles decorated porous graphene aerogel for high-performance lithium sulfur battery 被引量:1
6
作者 Xiaohui Tian Yingke Zhou +2 位作者 Bingyin Zhang Naomie Beolle Songwe Selabi Guiru Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期239-251,I0008,共14页
Lithium sulfur battery(LSB)is a promising energy storage system to meet the increasing energy demands for electric vehicles and smart grid,while its wide commercialization is severely inhibited by the"shuttle eff... Lithium sulfur battery(LSB)is a promising energy storage system to meet the increasing energy demands for electric vehicles and smart grid,while its wide commercialization is severely inhibited by the"shuttle effect"of polysulfides,low utilization of sulfur cathode,and safety of lithium anode.To overcome these issues,herein,monodisperse polar NiCo_(2)O_(4)nanoparticles decorated porous graphene aerogel composite(NCO-GA)is proposed.The aerogel composite demonstrates high conductivity,hierarchical porous structure,high chemisorption capacity and excellent electrocatalytic ability,which effectively inhibits the"shuttle effect",promotes the ion/electron transport and increases the reaction kinetics.The NCO-GA/S cathode exhibits high discharge specific capacity(1214.1 mAh g^(-1)at 0.1 C),outstanding rate capability(435.7 mAh g^(-1)at 5 C)and remarkable cycle stability(decay of 0.031%/cycle over 1000 cycles).Quantitative analyses show that the physical adsorption provided by GA mainly contributes to the capacity of NCO-GA/S at low rate,while the chemical adsorption provided by polar NiCo_(2)O_(4)contributes mainly to the capacity of NCO-GA/S with the increase of current density and cycling.This work provides a new strategy for the design of GA-based composite with synergistic adsorption and electrocatalytic activity for the potential applications in LSB and related energy fields. 展开更多
关键词 porous graphene aerogel Monodisperse nanoparticles Polar NiCo_(2)O_(4) Chemical adsorption Catalytic conversion Lithium sulfur battery
下载PDF
Three-dimensional Porous Graphene/Polyaniline Hybrids for High Performance Supercapacitor Electrodes 被引量:2
7
作者 Zhaoxia HOU Peng SHI Shengnan ZOU 《Research and Application of Materials Science》 2020年第1期17-22,共6页
Graphene-based composites took extensive attraction as electrodes for supercacitors these years.Three-dimensional cross-linking porous graphene(3D rGO-m)was obtained by KOH activation to graphene modified by 1,2,4-tri... Graphene-based composites took extensive attraction as electrodes for supercacitors these years.Three-dimensional cross-linking porous graphene(3D rGO-m)was obtained by KOH activation to graphene modified by 1,2,4-triaminobenzene.3D porous graphene/polyaniline hybrids(3D rGO-m/PANI)was prepared by the in-situ chemical oxidative polymerization.The rGO-m are reconstructed from 2D to 3D porous structure after KOH activation.The PANI nanorod arrays are successfully decorated on the surface of the 3D porous graphene sheets.The specific capacitance of the 3D rGO-m/PANI hybrids reach 985 F/g at 0.5 A/g.The capacitance retention of 3D rGO-m/PANI maintains 90%of its initial capacity after 1000 cycles,while rGO-m/PANI only keeps 83%of its initial capacity,the cycling stability of both hybrids are higher than that of pure PANI(69%). 展开更多
关键词 three dimension porous graphene POLYANILINE hybrid materials SUPERCAPACITOR
下载PDF
Theoretical Study of Carrier Mobility in Two-Dimensional Tetragonal Carbon Allotrope from Porous Graphene
8
作者 高松 向晖 +3 位作者 徐波 夏奕东 殷江 刘治国 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第8期38-40,共3页
The carrier mobility of two-dimensional tetragonal carbon allotrope (T-CA) from porous graphene is investigated by first-principles calculations. T-CA can be constructed from divacancy and Stone-Thrower--Wales defec... The carrier mobility of two-dimensional tetragonal carbon allotrope (T-CA) from porous graphene is investigated by first-principles calculations. T-CA can be constructed from divacancy and Stone-Thrower--Wales defects from graphene. T-CA is a direct semiconductor with a band gap of 0.4 eV at F point. T-CA possesses a high carrier mobility of the order of 104 cm2V-ls-1. As our study demonstrates, T-CA has potential applications for next-generation electronic materials. 展开更多
关键词 of CA Theoretical Study of Carrier Mobility in Two-Dimensional Tetragonal Carbon Allotrope from porous graphene in from is
下载PDF
N,P co-doped porous graphene with high electrochemical properties obtained via the laser induction of cellulose nanofibrils
9
作者 Jie Wei Weiwei Yang +2 位作者 Shuai Jia Jie Wei Ziqiang Shao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第7期31-38,共8页
Cellulose and its derivatives are natural materials with high carbon contents, but it is challenging to convert their carbon into high value-added carbonaceous materials(e.g., graphene). Here, an approach to convert t... Cellulose and its derivatives are natural materials with high carbon contents, but it is challenging to convert their carbon into high value-added carbonaceous materials(e.g., graphene). Here, an approach to convert the carbon in cellulose into N, P co-doped porous graphene(LIG) materials via laser induction is proposed. Cellulose nanofibrils(CNFs), a cellulose derivative with high dispersion uniformity and abundant surface hydroxyl groups, were easily formed on a bulk substrate(thickness ≥5 mm) containing ammonium polyphosphate(APP). Then, a 10.6 μm CO2 laser was used to scribe for 1–5 passes on the CNFs/APP substrate under an ambient environment to produce N, P co-doped porous LIG. Upon increasing the number of laser scribing passes, the IG/IDof LIG first increased and then decreased, reaching a maximum of 1.68 at 4 passes. The good pore structure and low resistance also showed that 4 laser passes were ideal. Besides, the N, P co-doped LIG also showed excellent electrochemical performance, with a specific capacitance of 221.4 FF·g^(-1) and capacitance retention of 89.9%. This method exploits the advantages of nanocellulose and overcomes the difficulties associated with directly compounding cellulosic materials, providing a method for the further development of biomass nanomaterials. 展开更多
关键词 Cellulose nanofibrils Laser induction porous graphene Multiple lasing Supercapacitor
下载PDF
Three-dimensional oxygen-doped porous graphene:Sodium chloridetemplate preparation,structural characterization and supercapacitor performances
10
作者 Zesheng Li Bolin Li +6 位作者 Lijun Du Weiliang Wang Xichun Liao Huiqing Yu Changlin Yu Hongqiang Wang Qingyu Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期304-314,共11页
Supercapacitor is a new type of energy storage device,which has the advantages of high-power property and long cycle life.In this study,three-dimensional graphene(3 D-GN)with oxygen doping and porous structure was pre... Supercapacitor is a new type of energy storage device,which has the advantages of high-power property and long cycle life.In this study,three-dimensional graphene(3 D-GN)with oxygen doping and porous structure was prepared from graphene oxide(GO)by an inexpensive sodium chloride(NaCl)template,as a promising electrode material for the supercapacitor.The structure,morphology,specific surface area,pore size,of the sample were characterized by XRD,SEM,TEM and BET techniques.The electrochemical performances of the sample were tested by CV and CDC techniques.The 3 D-GE product is a threedimensional nano material with hierarchical porous structures,its specific surface area is much larger than that of routine stacked graphene(GN),and it contains a large number of mesoporous and macropores,a small amount of micropores.The capacitance characteristics of the 3 D-GN electrode material are excellent,showing high specific capacitance(173.5 F·g^(-1)at 1 A·g^(-1)),good rate performance(109.2 F·g^(-1)at 8 A·g^(-1))and long cycle life(88%capacitance retention after 10,000 cycles at 8 A·g^(-1)) 展开更多
关键词 3-D porous graphene Template preparation Sodium chloride SUPERCAPACITOR
下载PDF
Effects of Porous Graphene on LiOH Based Composite Materials for Low Temperature Thermochemical Heat Storage
11
作者 Lisheng Deng Hongyu Huang +5 位作者 Zhaohong He Shijie Li Zhen Huang Mitsuhiro Kubota You Zhou Dezhen Chen 《Journal of Renewable Materials》 SCIE EI 2022年第11期2895-2906,共12页
Thermochemical heat storage material inorganic hydrate LiOH is selected as a promising candidate material for storing low-temperature heat energy because of its high energy density(1440 kJ/kg)and mild reaction process... Thermochemical heat storage material inorganic hydrate LiOH is selected as a promising candidate material for storing low-temperature heat energy because of its high energy density(1440 kJ/kg)and mild reaction process.However,the low hydration rate of LiOH limits the performance of low temperature thermochemical heat storage system as well as the thermal conductivity.In this study,porous-graphene/LiOH composite thermochemical heat storage materials with strong water sorption property and higher thermal conductivity were synthesized by hydrothermal process.The experimental results show that the hydration rate of the composites was greatly improved.The heat storage density of the composite materials was increased by 47%(from 661 kJ/kg to 974 kJ/kg).By combing the porous graphene,the thermal conductivity of composites with different contents were highly increased by 21.1%to 78.7%,but the increase of heat storage density is opposite to that of thermal conductivity.The development of high-performance materials for thermochemical heat storage should consider the relationship between the heat storage density and thermal conductivity of the material,and the thermal conductivity of the supporter needs to be further improved. 展开更多
关键词 THERMOCHEMICAL heat storage HYDRATION thermal conductivity porous graphene
下载PDF
Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium–sulfur batteries 被引量:12
12
作者 Jia-Le Shi Cheng Tang +2 位作者 Jia-Qi Huang Wancheng Zhu Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期167-175,共9页
The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,mo... The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage. 展开更多
关键词 Nitrogen-doped graphene Chemical vapor deposition Oxygen reduction reaction Lithium-sulfur battery porous carbon materials Exposure of active sites
下载PDF
Honeycomb-like MoCo alloy on 3D nitrogen-doped porous graphene for efficient hydrogen evolution reaction
13
作者 Lin-Ping Wang Kuang Li +7 位作者 Hua-Long Ding Le Xu Chen Huang Jiao-Jiao Zhou Cong-TaoWen Pei-Lin Zhang Wei-Wei Wang Lu-Yang Chen 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1072-1082,共11页
An efficient electrocatalyst is indispensable to significantly reduce energy consumption and accelerate the conversion efficiency of water splitting.In this work,the honeycomb-like porous MoCo alloy on nitrogen-doped ... An efficient electrocatalyst is indispensable to significantly reduce energy consumption and accelerate the conversion efficiency of water splitting.In this work,the honeycomb-like porous MoCo alloy on nitrogen-doped three-dimensional(3D)porous graphene substrate(Mo_(0.3)Co_(0.7)@NPG)has been synthesized from the annealing of layered double hydroxide(MoCo-LDH@NPG).Especially,the Mo_(0.3)Co_(0.7)@NPG exhibits low hydrogen evolution overpotential of 75 mV(10 mA·cm^(-2))and a Tafel slope of 69.9 mV·dec^(-1),which can be attributed to highly conductive NPG substrate,the unique nanostructure and the synergistic effect of Mo and Co.Moreover,the Mo_(0.3)Co_(0.7)@NPG can maintain the original morphology and high catalytic activity after 50-h stability test.This work proposes a general strategy to synthesize a multi-element alloy on conductive substrates with high porosity for electrocatalytic reaction. 展开更多
关键词 MoCo alloy Three-dimensional nitrogen-doped porous graphene Hydrogen evolution reaction(HER)
原文传递
Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes 被引量:16
14
作者 Lei Wang Xiao-Wen Lin +10 位作者 Wei Hu Guang-Hao Shao Peng Chen Lan-Ju Liang Biao-Bing Jin Pei-Heng Wu Hao Qian Yi-Nong Lu Xiao Liang Zhi-Gang Zheng Yan-Qing Lu 《Light(Science & Applications)》 SCIE EI CAS CSCD 2015年第1期477-482,共6页
Versatile devices,especially tunable ones,for terahertz imaging,sensing and high-speed communication,are in high demand.Liquid crystal based components are perfect candidates in the optical range;however,they encounte... Versatile devices,especially tunable ones,for terahertz imaging,sensing and high-speed communication,are in high demand.Liquid crystal based components are perfect candidates in the optical range;however,they encounter significant challenges in the terahertz band,particularly the lack of highly transparent electrodes and the drawbacks induced by a thick cell.Here,a strategy to overcome all these challenges is proposed:Few-layer porous graphene is employed as an electrode with a transmittance of more than 98%.A subwavelength metal wire grid is utilized as an integrated high-efficiency electrode and polarizer.The homogeneous alignment of a high-birefringence liquid crystal is implemented on both frail electrodes via a non-contact photo-alignment technique.A tunable terahertz waveplate is thus obtained.Its polarization evolution is directly demonstrated.Furthermore,quarter-wave plates that are electrically controllable over the entire testing range are achieved by stacking two cells.The proposed solution may pave a simple and bright road toward the development of various liquid crystal terahertz apparatuses. 展开更多
关键词 liquid crystal porous graphene terahertz waveplate
原文传递
Porous graphene paper for supercapacitor applications 被引量:3
15
作者 Qi Li Xinli Guo +8 位作者 Yao Zhang Weijie Zhang Chuang Ge Li Zhao Xiaojuan Wang Hongyi Zhang Jian Chen Zengmei Wang Litao Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第8期793-799,共7页
Graphene paper shows a great promise for the electrical energy storage. However, the high stability, purity and specific surface area have become stringent requirements for supercapacitor applications. Finding methods... Graphene paper shows a great promise for the electrical energy storage. However, the high stability, purity and specific surface area have become stringent requirements for supercapacitor applications. Finding methods to tackle these problems is rather challenging. Here, we develop a facile method to prepare porous graphene papers with a thickness 0.5 mm by a thermal shock to the layer-structure graphene paper self-assembled on Cu foil under nitrogen flowing. The as-prepared porous graphene paper exhibits a large specific capacitance of 100 Fg-1at the scan rate of 100 mVs-1with high stability and purity without any residual chemical reagents, showing a promising potential for supercapacitor applications. The high electrochemical properties are mainly attributed to the high-specific area and the improved conductivity of the porous graphene paper performed by the multieffect of reducing, cleaving and expanding to the layer-structure graphene paper by high-energy thermal heating during the thermal shock process. This work paves a pathway to the facile preparation of porous graphene paper for supercapacitor applications. 展开更多
关键词 porous graphene paper SELF-ASSEMBLING Thermal shock Electrochemical properties SUPERCAPACITOR
原文传递
Newly Design Porous/Sponge Red Phosphorus@Graphene and Highly Conductive Ni2P Electrode for Asymmetric Solid State Supercapacitive Device With Excellent Performance 被引量:3
16
作者 Nazish Parveen Muhammad Hilal Jeong In Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期169-184,共16页
Supercapacitors have attracted much attention in the field of electrochemical energy storage.However,material preparation,stability,performance as well as power density limit their applications in many fields.Herein,a... Supercapacitors have attracted much attention in the field of electrochemical energy storage.However,material preparation,stability,performance as well as power density limit their applications in many fields.Herein,a sponge-like red phosphorus@graphene(rP@rGO)negative electrode and a Ni2P positive electrode were prepared using a simple one-step method.Both electrodes showed excellent performances(294 F g^−1 and 1526.6 F g^−1 for rP@rGO and Ni2P,respectively),which seem to be the highest among all rP@rGO-and Ni2P-based electrodes reported so far.The asymmetric solid-state supercapacitor was assembled by sandwiching a gel electrolyte-soaked cellulose paper between rP@rGO and Ni2P as the negative and positive electrodes.Compared to other asymmetric devices,the device,which attained a high operating window of up to 1.6 V,showed high energy and power density values of 41.66 and 1200 W kg−1,respectively.It also has an excellent cyclic stability up to 88%after various consecutive charge/discharge tests.Additionally,the device could power commercial light emitting diodes and fans for 30 s.So,the ease of the synthesis method and excellent performance of the prepared electrode materials mat have significant potential for energy storage applications. 展开更多
关键词 Sponge red phosphorus porous graphene NI2P ELECTRODE Asymmetric solid-state supercapacitor
下载PDF
A novel approach to synthesize porous graphene by the transformation and deoxidation of oxygen-containing functional groups
17
作者 Da Zhang Luming Chen +6 位作者 Yaochun Yao Feng Liang Tao Qu Wenhui Ma Bing Yang Yongnian Dai Yong Lei 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第12期2313-2317,共5页
In this study,impurity-free porous graphene(PG) with intrinsic pore structure was synthesized through a facile acid-alkali etching-assisted sonication approach.The pore structure appears on the surface of graphene she... In this study,impurity-free porous graphene(PG) with intrinsic pore structure was synthesized through a facile acid-alkali etching-assisted sonication approach.The pore structure appears on the surface of graphene sheets due to intrinsic defects of graphene.The PG possessed an extremely high specific surface area of 2184 m^2/g,the size of^5 μm and layer numbers of 3-8.Additionally,PG contained micropores and mesopores simultaneously,with an average pore diameter of approximately 3 nm.The effects of acid,alkali,and ultrasound treatment on PG preparation were elucidated by transmission electron microscopy and fourier transform infrared spectroscopy.First,in an acidic solution,oxygen-containing functional groups(hydroxyls,carboxyl,and epoxides) were formed due to the hydrolysis of sulfate and continuous transformations of these functional groups on graphene oxide.Second,under the synergistic effects of alkali and ultrasound treatment,PG was obtained due to the loss of carboxyl and epoxide groups.A new route for preparing PG was provided by the proposed method. 展开更多
关键词 HYDROLYSIS DEOXIDATION Ultrasound Oxygen-containing functional group porous graphene
原文传递
In situ carbon nanotube clusters grown from three- dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li-S batteries 被引量:4
18
作者 Shizhi Huang Lingli Zhang +2 位作者 Jingyan Wang Jinliang Zhu Pei Kang Shen 《Nano Research》 SCIE EI CAS CSCD 2018年第3期1731-1743,共13页
Carbon nanotube (CNT) clusters grown in situ in three-dimensional (3D) porous graphene networks (3DG-CNTs), with integrated structure and remarkable electronic conductivity, are desirable S host materials for Li... Carbon nanotube (CNT) clusters grown in situ in three-dimensional (3D) porous graphene networks (3DG-CNTs), with integrated structure and remarkable electronic conductivity, are desirable S host materials for Li-S batteries. 3DG-CNT exhibits a high surface area (1,645 m^2·g^-1), superior electronic conductivity of 1,055 S·m^-1, and a 3D porous networked structure. Large clusters of CNTs anchored on the inner walls of 3D graphene networks act as capillaries, benefitting restriction of agglomeration by high contents of immersed S. Moreover, the capillary-like CNT clusters grown in situ in the pores efficiently form restricted spaces for Li polysulfides, significantly reducing the shuttling effect and promoting S utilization throughout the charge/discharge process. With an areal S mass loading of 81.6 wt.%, the 3DG-CNT/S electrode exhibits an initial specific capacity reaching 1,229 mA·h·g^-1 at 0.5 C and capacity decays of 0.044% and 0.059% per cycle at 0.5 and 1 C, respectively, over 500 cycles. The electrode material also reveals a remarkable rate performance and the large capacity of 812 mA·h·g^-1 at 3 C. 展开更多
关键词 in situ growth carbon nanotube three-dimensional (3D)graphene porous network Li-S battery
原文传递
K2Ti6O13 Nanoparticle-Loaded Porous rGO Crumples for Supercapacitors 被引量:3
19
作者 Chongmin Lee Sun Kyung Kim +1 位作者 Hankwon Chang Hee Dong Jang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第1期115-123,共9页
One-dimensional alkali metal titanates containing potassium,sodium,and lithium are of great concern owing to their high ion mobility and high specific surface area.When those titanates are combined with conductive mat... One-dimensional alkali metal titanates containing potassium,sodium,and lithium are of great concern owing to their high ion mobility and high specific surface area.When those titanates are combined with conductive materials such as graphene,carbon nanotube,and carbon nanofiber,they are able to be employed as efficient electrode materials for supercapacitors.Potassium hexa-titanate(K2Ti6O13,KTO),in particular,has shown superior electrochemical properties compared to other alkali metal titanates because of their large lattice parameters induced by the large radius of potassium ions.Here,we present porous rGO crumples(PGC)decorated with KTO nanoparticles(NPs)for application to supercapacitors.The KTO NP/PGC composites were synthesized by aerosol spray pyrolysis and post-heat treatment.KTO NPs less than 10 nm in diameter were loaded onto PGCs ranging from 3 to 5μm.Enhanced porous structure of the composites was obtained by the activation of rGO by adding an excessive amount of KOH to the composites.The KTO NP/PGC composite electrodes fabricated at the GO/KOH/TiO2 ratio of 1:3:0.25 showed the highest performance(275 F g−1)in capacitance with different KOH concentrations and cycling stability(83%)after 2000 cycles at a current density of 1 A g−1. 展开更多
关键词 Potassium hexa-titanate porous graphene crumples SUPERCAPACITORS
下载PDF
Ion and water transport in charge-modified graphene nanopores
20
作者 裘英华 李堃 +3 位作者 陈伟宇 司伟 谭启檐 陈云飞 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期553-558,共6页
Porous graphene has a high mechanical strength and an atomic-layer thickness that makes it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous so... Porous graphene has a high mechanical strength and an atomic-layer thickness that makes it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solutions are a type of strong long-range interaction that may greatly influence fluid transport through nanopores. In this study, molecular dynamic simulations were conducted to investigate ion and water transport through 1.05-nm diameter monolayer graphene nanopores, with their edges charge-modified. Our results indicated that these nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase-decrease profile while the coion currents monotonically decrease. The co-ion rejection can reach 76.5% and 90.2% when the nanopores are negatively and positively charged, respectively. The Cl-ion current increases and reaches a plateau, and the Na+current decreases as the charge amount increases in systems in which Na+ions act as counterions. In addition, charge modification can enhance water transport through nanopores. This is mainly due to the ion selectivity of the nanopores. Notably, positive charges on the pore edges facilitate water transport much more strongly than negative charges. 展开更多
关键词 monolayer porous graphene charge-modified nanopore ion selectivity ionic current water trans-port
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部