期刊文献+
共找到182篇文章
< 1 2 10 >
每页显示 20 50 100
基于改进轻量级沙漏模型的2D单人姿态估计研究与应用
1
作者 黄晨 童维勤 +4 位作者 戴伟 陈一民 邹一波 翁康年 吴志华 《计算机应用与软件》 北大核心 2024年第10期191-196,共6页
提出一种基于改进轻量级沙漏模型的2D单人人体姿态估计方法。使用逆残差卷积来构建改进的轻量级沙漏模型,从而降低参数数量与计算量,使用多尺度特征融合以提高轻量级模型在遮挡情况下的关键点检测能力。引入知识蒸馏方法,使得改进的模... 提出一种基于改进轻量级沙漏模型的2D单人人体姿态估计方法。使用逆残差卷积来构建改进的轻量级沙漏模型,从而降低参数数量与计算量,使用多尺度特征融合以提高轻量级模型在遮挡情况下的关键点检测能力。引入知识蒸馏方法,使得改进的模型在略微降低检测准确度时,能大幅降低训练和部署所需要的计算资源。MPII数据集和实际应用中的检测结果表明,改进的轻量级沙漏模型能有效检测人体骨骼关键点,实时性好、鲁棒性强,能在一定程度上克服遮挡问题。 展开更多
关键词 姿态估计 沙漏模型 轻量级模型 知识蒸馏
下载PDF
轻量级深度神经网络模型适配边缘智能研究综述 被引量:1
2
作者 徐小华 周长兵 +2 位作者 胡忠旭 林仕勋 喻振杰 《计算机科学》 CSCD 北大核心 2024年第7期257-271,共15页
随着物联网和人工智能的迅猛发展,边缘计算和人工智能的结合催生了边缘智能这一新的研究领域。边缘智能具备一定的计算能力,能够提供实时、高效和智能的响应。它在智能城市、工业物联网、智能医疗、自动驾驶以及智能家居等领域都具有重... 随着物联网和人工智能的迅猛发展,边缘计算和人工智能的结合催生了边缘智能这一新的研究领域。边缘智能具备一定的计算能力,能够提供实时、高效和智能的响应。它在智能城市、工业物联网、智能医疗、自动驾驶以及智能家居等领域都具有重要的应用。为了提升模型的准确度,深度神经网络往往采用更深、更大的架构,导致了模型参数的显著增加、存储需求的上升和计算量的增大。受限于物联网边缘设备在计算能力、存储空间和能源资源方面的局限,深度神经网络难以被直接部署到这些设备上。因此,低内存、低计算资源、高准确度且能实时推理的轻量级深度神经网络成为了研究热点。文中首先回顾边缘智能的发展历程,并分析轻量级深度神经网络适应边缘智能的现实需求,提出了两种构建轻量级深度神经网络模型的方法:深度模型压缩技术和轻量化架构设计。接着详细讨论了参数剪枝、参数量化、低秩分解、知识蒸馏以及混合压缩5种主要的深度模型压缩技术,归纳它们各自的性能优势与局限,并评估它们在常用数据集上的压缩效果。之后深入分析轻量化架构设计中的调整卷积核大小、降低输入通道数、分解卷积操作和调整卷积宽度的策略,并比较了几种常用的轻量化网络模型。最后,展望轻量级深度神经网络在边缘智能领域的未来研究方向。 展开更多
关键词 边缘智能 深度神经网络 轻量级神经网络 模型压缩 轻量化架构设计
下载PDF
融合迁移学习和知识蒸馏的轻量级马铃薯叶片病害识别模型的构建方法 被引量:1
3
作者 章广传 李彤 +2 位作者 高泉 叶荣 何云 《江苏农业科学》 北大核心 2024年第4期197-206,共10页
轻量级深度学习模型常被部署于移动端或物联网端,以实现算力资源受限条件下马铃薯病害的识别。但轻量级模型网络层数较少,模型特征提取能力有限,无法实现相似表型特征的精确提取。为解决上述问题,提出一种轻量级残差网络模型的构建方法... 轻量级深度学习模型常被部署于移动端或物联网端,以实现算力资源受限条件下马铃薯病害的识别。但轻量级模型网络层数较少,模型特征提取能力有限,无法实现相似表型特征的精确提取。为解决上述问题,提出一种轻量级残差网络模型的构建方法,该方法融合迁移学习和知识蒸馏策略训练模型,在教师模型上使用迁移学习策略缩短教师模型的训练时间,并将ResNet18模型进行模型剪枝,使用降采样的方法提高模型识别准确率,最终在保证轻量化的前提下,实现对马铃薯叶片病害类别的精准识别。在马铃薯叶片数据集上进行试验,结果表明,本研究方法构建的轻量级模型的识别准确率相较于Resnet18提高1.55百分点,模型大小缩小49.18%;相较于目前农作物病害识别领域,常用的轻量级模型MobileNetV3在模型大小相近的情况下,识别准确率提高2.91百分点。该模型能够满足大部分实际应用下的场景,可为部署在物联网和移动端设备上的模型提供参考。 展开更多
关键词 马铃薯 病害识别 轻量级模型 迁移学习 知识蒸馏
下载PDF
基于轻量级卷积神经网络的羊绒羊毛识别方法
4
作者 路凯 罗俊丽 +2 位作者 张洋 裴文珂 肖玉麟 《毛纺科技》 CAS 北大核心 2024年第4期94-102,共9页
羊绒、羊毛纤维的形态和物理化学性质十分相似,2种纤维表面鳞片的纹理有所不同,鉴别二者的传统方法显微镜人工鉴别存在速度慢、识别率不高、人力成本高等弊端。针对该问题,文章提出了一种基于轻量级卷积神经网络MobileNetV3_small模型... 羊绒、羊毛纤维的形态和物理化学性质十分相似,2种纤维表面鳞片的纹理有所不同,鉴别二者的传统方法显微镜人工鉴别存在速度慢、识别率不高、人力成本高等弊端。针对该问题,文章提出了一种基于轻量级卷积神经网络MobileNetV3_small模型的纤维识别方法。实验发现:纤维图像中的鳞片纹理模式复杂度有限,轻量级网络能够有效地提取纤维图像中的视觉特征,并根据特征较好地识别出纤维的类别,实验中5种不同的纤维测试集识别率超过97.1%。与其他卷积神经网络相比,轻量级模型MobileNetV3_small速度更快,识别5000个样本只需13 s,适合于纤维商检中的快速检测。 展开更多
关键词 羊绒 羊毛 快速识别 轻量级 MobileNetV3模型
下载PDF
基于特征融合的轻量级新残差人脸识别方法
5
作者 惠康华 闫建青 +1 位作者 高思华 贺怀清 《电子学报》 EI CAS CSCD 北大核心 2024年第3期937-944,共8页
针对现有轻量级模型在嵌入式设备的人脸识别应用中存在识别精度难以提升的问题,提出一种融合人脸对齐关键特征点信息的轻量级新残差网络模型(Lightweight New Residual Network,LNRN).LNRN利用深度残差网络结构能够解决网络退化且避免... 针对现有轻量级模型在嵌入式设备的人脸识别应用中存在识别精度难以提升的问题,提出一种融合人脸对齐关键特征点信息的轻量级新残差网络模型(Lightweight New Residual Network,LNRN).LNRN利用深度残差网络结构能够解决网络退化且避免干扰因素影响的优势,结合人脸对齐环节产生的关键特征点信息,对深度残差网络结构进行简化和合理设计,实现对关键特征信息和全局信息的提取.为避免特征提取过程中丢失重要特征信息,该模型在新残差网络中加入结合空间和通道的注意力机制进行辅助.在公开的四个标准人脸数据集上的仿真实验表明,该模型识别速度在接近主流轻量级人脸识别方法的同时,平均识别精度比MobiFace提高了0.6%. 展开更多
关键词 轻量级新残差网络模型 人脸识别 关键特征信息 注意力机制
下载PDF
Rmcvit:一种融合卷积与自注意力的轻量级图像识别算法
6
作者 孙红 吴一凡 +2 位作者 徐广辉 田鑫驰 朱江明 《小型微型计算机系统》 CSCD 北大核心 2024年第8期1929-1934,共6页
为了解决目前基于Transformer的模型需要较大的参数量而无法有效应用在资源受限的移动端设备中,提出一种融合卷积与Transformer两者优势的轻量级混合模型.模型中Rmcvit Block将输入张量分成多个通道组,利用深度可分离卷积和跨通道维度... 为了解决目前基于Transformer的模型需要较大的参数量而无法有效应用在资源受限的移动端设备中,提出一种融合卷积与Transformer两者优势的轻量级混合模型.模型中Rmcvit Block将输入张量分成多个通道组,利用深度可分离卷积和跨通道维度的互协方差注意力来增加感受野并融合多尺度特征,并融合unflod模块在保证其空间顺序的前提下,降低每个向量序列(token)送入自注意力模块后的计算消耗.基于整理后的Imagenet数据集的对比实验,RmcVit-M以5.81M的参数量大小达到了85.2%的准确率,其模型相关变体性能超过了参数量相似的Transformer模型和卷积神经网络.结果表明,Rmcvit能够有效结合卷积神经网络与Transformer的优势,达到了以较少的模型参数获得更高准确率的目的. 展开更多
关键词 卷积神经网络 互协方差注意力 轻量级混合模型 深度可分离卷积 多尺度
下载PDF
面向移动端图像分类的轻量级CNN优化 被引量:3
7
作者 张晓青 刘小舟 陈登 《计算机工程与设计》 北大核心 2024年第2期436-442,共7页
为解决图像分类算法由于计算量大和参数冗余难以应用在存储空间与计算能力受限的移动设备上的问题,提出一种轻量的卷积计算模块Extremely Lightweight Block(ELBlock),采用逐点卷积叠加深度可分离卷积的方法,对逐点卷积进行分组,增加相... 为解决图像分类算法由于计算量大和参数冗余难以应用在存储空间与计算能力受限的移动设备上的问题,提出一种轻量的卷积计算模块Extremely Lightweight Block(ELBlock),采用逐点卷积叠加深度可分离卷积的方法,对逐点卷积进行分组,增加相邻层过滤器之间的对角相关性,进一步降低卷积操作的计算复杂度;利用通道混洗关联输入和输出通道,提高特征的信息表达能力;基于ELBlock设计一个极其轻量的小型神经网络架构ELNet,结构更加简洁、高效。在Android手机上的实验结果表明,所提ELNet在保证分类精度的同时,具有计算量小、参数少和推理时间短的优点。 展开更多
关键词 深度学习 图像分类 轻量级神经网络 模型优化 模型压缩 模型部署 移动终端
下载PDF
无锚框的轻量级遥感图像目标检测算法
8
作者 张云佐 武存宇 +1 位作者 郭威 赵宁 《南京信息工程大学学报》 CAS 北大核心 2024年第2期212-220,共9页
现有遥感图像目标检测算法存在参数量大、检测速度慢和难以部署于移动设备的问题,为此,本文提出了一种无锚框的轻量级遥感图像目标检测算法.首先设计了DWS-Sandglass轻量化模块以降低模型体积,并改进模型激活函数,以确保检测精度.然后... 现有遥感图像目标检测算法存在参数量大、检测速度慢和难以部署于移动设备的问题,为此,本文提出了一种无锚框的轻量级遥感图像目标检测算法.首先设计了DWS-Sandglass轻量化模块以降低模型体积,并改进模型激活函数,以确保检测精度.然后引入无参数注意力模块SimAM,使网络能够专注于更重要的特征信息.最后对无锚框算法的冗余通道进行剪枝操作以减少模型参数量,并通过微调回升精度.在HRSC2016数据集上的实验结果表明,与当前主流的无锚框检测算法相比,该算法在检测精度相当的情况下检测速度更快、模型体积更小,更适合在移动设备部署. 展开更多
关键词 计算机应用 遥感目标检测 轻量级 模型剪枝
下载PDF
基于轻量级Transformer的城市路网提取方法 被引量:2
9
作者 冯志成 杨杰 陈智超 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第1期40-49,108,共11页
针对现有方法存在道路区域提取不精准和实时性不足的限制,提出基于轻量级Transformer的路网提取方法RoadViT.利用卷积神经网络与Transformer混合的MobileViT架构进行编码特征,有效地提取高级上下文信息.提出金字塔解码器实现多尺度特征... 针对现有方法存在道路区域提取不精准和实时性不足的限制,提出基于轻量级Transformer的路网提取方法RoadViT.利用卷积神经网络与Transformer混合的MobileViT架构进行编码特征,有效地提取高级上下文信息.提出金字塔解码器实现多尺度特征的提取和融合,生成像素类别的概率分布.结合Mosaic与多尺度缩放和随机裁剪策略实现数据增强,构建精细多样的遥感图像.针对城市遥感图像中道路类别和背景类别的不平衡问题,提出动态加权损失函数.实验结果表明,RoadViT的参数量仅为1.25×10^(6),在Jetson TX2上的推理速度可达10帧/s,在CHN6-CUG数据集上的精度可达57.0%.所提方法是轻量级Transformer在城市遥感图像中的有效探索,在保证推理实时性的同时,实现道路提取精度的提升. 展开更多
关键词 城市路网提取 TRANSFORMER MobileViT 遥感图像语义分割 轻量级模型
下载PDF
基于轻量级Transformer的隧道裂缝分割 被引量:1
10
作者 邝先验 徐姚明 +2 位作者 雷卉 程福军 桓湘澜 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第8期3421-3433,共13页
裂缝检测对保证隧道结构安全至关重要,及时发现隧道裂缝缺陷,有利于降低工程维修成本和保障行车安全。然而,传统卷积神经网络在隧道裂缝检测任务中主要侧重提高检测精度和算法复杂度,如何平衡裂缝检测的精度和实时性是当前研究的一个难... 裂缝检测对保证隧道结构安全至关重要,及时发现隧道裂缝缺陷,有利于降低工程维修成本和保障行车安全。然而,传统卷积神经网络在隧道裂缝检测任务中主要侧重提高检测精度和算法复杂度,如何平衡裂缝检测的精度和实时性是当前研究的一个难点。针对这一问题,本文提出一种基于轻量级Transformer的裂缝分割方法 CrackViT。首先,采用卷积神经网络与Transformer混合的MobileViT网络构建裂缝特征提取网络,减少网络模型参数和计算量,并且有效提取裂缝图像全局信息和局部特征信息。然后,提出改进空洞空间金字塔池化解码器实现不同尺度的特征提取和信息融合,实现像素级概率分布。同时,裂缝图像存在细节信息缺失问题,引入高效通道注意力模块,增强对裂缝特征信息的提取能力。此外,针对裂缝与背景类别不平衡问题,设计了在线困难样本挖掘损失函数进行缓解。实验结果表明:在单个3050Ti GPU上,CrackViT算法最终在裂缝数据集上以63 FPS的速度获得了75.62%的IoU,模型参数量仅为2.43 M。CrackViT-L模型精度IoU为76.83%,模型参数量为3.56 M,模型推理速度达到61FPS。算法测试精度优于大多数主流模型,并且需要更少的模型参数。研究结果表明,CrackViT所预测的隧道裂缝分割图像边缘更加清晰和完整,保持推理速度的同时,能够有效检测裂缝,该算法有助于隧道裂缝检测实际应用。 展开更多
关键词 裂缝分割 TRANSFORMER MobileViT 空洞空间金字塔池化 轻量级模型
下载PDF
基于改进YOLOv5s的轻量级车辆检测系统
11
作者 林小涵 侯典立 郑红霞 《鲁东大学学报(自然科学版)》 2024年第3期261-268,共8页
基于深度学习的车辆检测在智慧交通中起着重要作用,现有模型结构复杂、计算量大,难以布置在嵌入式系统的边缘设备。本文提出一种基于YOLOv5s的轻量级车辆检测算法,通过GhostNet和剪枝优化策略对YOLOv5s进行了改进,实现系统的轻量化和检... 基于深度学习的车辆检测在智慧交通中起着重要作用,现有模型结构复杂、计算量大,难以布置在嵌入式系统的边缘设备。本文提出一种基于YOLOv5s的轻量级车辆检测算法,通过GhostNet和剪枝优化策略对YOLOv5s进行了改进,实现系统的轻量化和检测的实时性;损失函数Focal-EIoU Loss的引入解决了样本不平衡和纵横比模糊定义问题,从而提高目标检测的性能。在UA-DETRAC数据集上的实验结果表明,所提算法与原YOLOv5s算法相比参数量、模型体积和浮点运算次数分别减少了63%、50.6%和64.7%,检测速度提升了50%,同时保持了较高精度、召回率,为空间、能源、资源有限的边缘检测设备提供了一种实时性算法选择。 展开更多
关键词 YOLOv5s GhostNet 车辆检测 轻量级模型 EIoU
下载PDF
轻量级的两方认证密钥协商协议
12
作者 宋庆 马米米 +1 位作者 邓淼磊 左志斌 《计算机工程与应用》 CSCD 北大核心 2024年第14期283-293,共11页
轻量级的两方认证密钥协商协议允许通信双方在公开信道上建立一个相同且安全的会话密钥。现有的认证协议难以满足轻量级的需求,同时多数轻量级协议仍存在某些安全问题。基于此,提出了一种基于身份的两方匿名轻量级逆向防火墙认证密钥协... 轻量级的两方认证密钥协商协议允许通信双方在公开信道上建立一个相同且安全的会话密钥。现有的认证协议难以满足轻量级的需求,同时多数轻量级协议仍存在某些安全问题。基于此,提出了一种基于身份的两方匿名轻量级逆向防火墙认证密钥协商协议。该协议在eCK模型下结合BAN逻辑被证明是安全的。协议提供匿名性、完美前向安全性、抗重放攻击、抗Dos攻击、抗中间人攻击。与其他轻量级认证协议对比发现,该协议具有更高的安全性和较短的运行时间,适用于资源受限设备。 展开更多
关键词 身份认证 密钥协商 逆向防火墙 轻量级 eCK模型 BAN逻辑
下载PDF
GhostNet轻量级网络在糖尿病视网膜病变诊断中的应用价值
13
作者 朱小红 张云 +1 位作者 刘美玲 曹凯 《首都医科大学学报》 CAS 北大核心 2024年第4期678-685,共8页
目的基于眼底彩照,分别应用经典卷积神经网络DenseNet121和轻量级网络GhostNet训练糖尿病视网膜病变(diabetic retinopathy,DR)的诊断模型(将DR和正常眼底做区分)和鉴别诊断(将DR和其他眼底病做区分)模型,评价基于轻量级网络GhostNet的D... 目的基于眼底彩照,分别应用经典卷积神经网络DenseNet121和轻量级网络GhostNet训练糖尿病视网膜病变(diabetic retinopathy,DR)的诊断模型(将DR和正常眼底做区分)和鉴别诊断(将DR和其他眼底病做区分)模型,评价基于轻量级网络GhostNet的DR诊断模型的应用价值。方法收集大样本的眼底彩照29535张(含DR 9883张、正常眼底2000张、用于做鉴别诊断的其他致盲性眼底病17652张)。分别采用经典卷积神经网络DenseNet121和轻量级网络GhostNet建模,并借助迁移学习做模型训练。采用受试者工作特征(receiver operating characteristic,ROC)曲线及其曲线下面积(area under the curve,AUC)、灵敏度、特异度、准确率评价模型性能。结果与基于DenseNet121的模型相比,基于GhostNet的模型对单张眼底照的诊断时间缩短了60.3%。在DR的诊断方面,基于GhostNet的模型的AUC值、灵敏度、特异度、准确率分别为0.911、0.888、0.934、91.3%,基于DenseNet121的模型的AUC值、灵敏度、特异度、准确率分别为0.954、0.921、0.986、95.5%。在DR与其他眼底病的鉴别诊断方面,基于GhostNet的模型的AUC值、灵敏度、特异度、准确率分别为0.862、0.856、0.901、87.8%;基于DenseNet121的模型的AUC值、灵敏度、特异度、准确率分别为0.899、0.871、0.935、90.2%。结论基于GhostNet轻量级神经网络构建的DR诊断模型和鉴别诊断模型,其诊断效率较经典模型DenseNet121有显著提升,并且模型兼具较高的准确率。对于社区医院等缺乏眼科医师且设备性能不高的基层医疗机构,可考虑应用该技术开展DR的初筛。 展开更多
关键词 糖尿病视网膜病变 轻量级神经网络模型 诊断 筛查 社区
下载PDF
基于大数据技术的高校轻量级财务系统设计
14
作者 周纳宇 谭晓明 《中国新技术新产品》 2024年第14期140-142,共3页
针对传统高校财务系统存在运行效率低、运行成本高以及运行性能不稳定等问题,本文设计了一种基于大数据技术的高校轻量级财务系统。结合业务层、技术层及数据层的工作原理对系统电路和编码器等硬件进行优化,并引入决策树拟合构建财务管... 针对传统高校财务系统存在运行效率低、运行成本高以及运行性能不稳定等问题,本文设计了一种基于大数据技术的高校轻量级财务系统。结合业务层、技术层及数据层的工作原理对系统电路和编码器等硬件进行优化,并引入决策树拟合构建财务管理关系模型,对高校财务数据进行交叉验证,由此完成了软件设计。系统测试表明,与传统财务系统相比,本系统实现了对高校财务数据的实时监控与有效挖掘,在运行效率、运行成本以及运行性能等方面均具有显著优势,对提高高校财务管理水平具有积极意义。 展开更多
关键词 大数据 高校财务系统 轻量级 关系模型
下载PDF
基于多尺度融合的轻量级脑肿瘤分割算法
15
作者 钱东宝 庞春颖 李晶怡 《长春理工大学学报(自然科学版)》 2024年第3期101-107,共7页
脑肿瘤是一种常见的神经系统疾病,准确的肿瘤分割对于诊断和治疗至关重要。然而,传统的自动分割方法受限于计算复杂度和精度,限制了其实际的临床应用。此外,脑肿瘤在不同尺度下具有多样性,因此需要一种方法来融合多尺度信息以提高分割... 脑肿瘤是一种常见的神经系统疾病,准确的肿瘤分割对于诊断和治疗至关重要。然而,传统的自动分割方法受限于计算复杂度和精度,限制了其实际的临床应用。此外,脑肿瘤在不同尺度下具有多样性,因此需要一种方法来融合多尺度信息以提高分割精度。首先设计一种轻量级脑肿瘤分割模型,通过减小参数量和计算复杂度,使其更适合点对点临床分析;其次,引入了多尺度信息融合策略和注意力机制,以考虑不同尺度下的脑肿瘤特征,提高分割准确度和鲁棒性;最后,实验优化后的模型完整肿瘤、核心区域、增强区域的Dice分数分别为0.851、0.834、0.778,参数量和计算复杂度仅为0.73 M和0.20 G,优于最先进的分割方法。 展开更多
关键词 脑肿瘤 自动分割 轻量级模型 多尺度信息融合
下载PDF
基于BiViTNet的轻量级驾驶员分心行为检测方法 被引量:1
16
作者 高尚兵 张莹莹 +2 位作者 王腾 张秦涛 刘宇 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期57-64,共8页
针对基于卷积神经网络的驾驶员分心行为检测,模型比较复杂、检测效率低下且缺少全局视觉表征的问题,提出了一种双分支并行双向交互神经网络BiViTNet(bidirectional interaction neural network based on vision transformer)对驾驶员行... 针对基于卷积神经网络的驾驶员分心行为检测,模型比较复杂、检测效率低下且缺少全局视觉表征的问题,提出了一种双分支并行双向交互神经网络BiViTNet(bidirectional interaction neural network based on vision transformer)对驾驶员行为进行识别,将ViT(vision transformer)引入到网络中对全局信息进行编码,在一定程度上提高检测精度。该网络由两个并行分支组成,第1个分支基于轻量级的CNN结构,第2个分支基于ViT结构。通过双向特征交互模块BiFIM(bidirectional feature interaction module)解决CNN Branch和ViT Branch之间特征不对称的问题,最后将两个分支的特征融合并对驾驶员行为进行检测。实验在自建的多视角驾驶员数据集上展开,验证集准确率达到97.18%,参数量为38.22 MB,计算量为271.20×10^(6)。研究表明:轻量级BiViTNet提高了驾驶员分心行为识别的准确率,可以在一定程度上辅助驾驶员的行车安全。 展开更多
关键词 交通运输工程 智能交通 分心行为检测 双分支并行双向交互神经网络 视觉转换器 轻量级模型
下载PDF
结合超轻量级双注意力模块的ShuffleNetV2面部表情识别
17
作者 林恩惠 王凡 谭晓玲 《电子测量技术》 北大核心 2024年第10期168-174,共7页
针对面部表情识别领域中难以同时实现低参数量与高准确率的挑战,提出了一种结合注意力机制的ShuffleNetV2网络的面部表情识别方法。该方法基于ShuffleNetV2架构,通过微调模型将Relu激活函数替换为PRelu激活函数,进一步提升了模型的特征... 针对面部表情识别领域中难以同时实现低参数量与高准确率的挑战,提出了一种结合注意力机制的ShuffleNetV2网络的面部表情识别方法。该方法基于ShuffleNetV2架构,通过微调模型将Relu激活函数替换为PRelu激活函数,进一步提升了模型的特征捕获与分类能力。此外,本文创新性地引入了一种超轻量级双注意力模块LDAM,该模块结合了DCAM注意力机制与空间注意力机制,并通过捷径连接技术集成到优化后的ShuffleNetV2模型中,以增强模型对细节特征的识别能力及分类效果。在FER2013和CK+两大公认的面部表情识别数据集上的实验结果显示,本方法分别达到了69.12%和94.77%的识别准确率,同时保持了低至1.25的模型参数量。这一成果不仅展示了在保持模型轻量化的同时提升识别性能的可能性,而且通过实验验证了所提出方法的高效性和实用性。 展开更多
关键词 面部表情识别方法的改进 激活函数 空间注意力机制 轻量化模型 轻量级双注意力模块
下载PDF
考虑边缘计算的轻量级网络硬件优化设计 被引量:1
18
作者 邹易奇 《无线互联科技》 2024年第3期81-83,共3页
随着移动互联网、物联网的蓬勃发展,大量智能终端设备产生了海量数据,这需要在网络边缘进行实时的智能分析和处理。因此,研究轻量级神经网络的硬件优化方案,以实现边缘智能成为当下的研究热点。文章阐述了基于模型压缩与量化、定点计算... 随着移动互联网、物联网的蓬勃发展,大量智能终端设备产生了海量数据,这需要在网络边缘进行实时的智能分析和处理。因此,研究轻量级神经网络的硬件优化方案,以实现边缘智能成为当下的研究热点。文章阐述了基于模型压缩与量化、定点计算替代浮点计算、数据流优化、存储优化与并行计算等方面的轻量级网络硬件设计与优化策略,在FPGA实现方面,采用流水线并行与BRAM利用提升了MobileNetV2的执行效率。结果表明,与原始模型相比,优化后的模型参数量、内存占用等资源利用指标显著降低,CPU利用率、推理速度等性能指标明显提升。实验研究验证了文章所提的各项优化方法,为将深度神经网络部署到边缘设备提供了参考。 展开更多
关键词 边缘计算 轻量级网络 模型压缩 硬件优化
下载PDF
融合GRU和CNN的轻量级网络入侵检测模型 被引量:5
19
作者 周璨 杨栋 魏松杰 《计算机系统应用》 2023年第8期162-170,共9页
当前网络流量数据呈现出高维、多态、海量的特点,这对入侵检测是一个新挑战.针对传统入侵检测模型中检测效率低、缺乏轻量化考虑等局限性,提出了一种融合GRU和CNN的轻量级网络入侵检测模型.首先使用极度随机树删除数据集中的冗余特征;... 当前网络流量数据呈现出高维、多态、海量的特点,这对入侵检测是一个新挑战.针对传统入侵检测模型中检测效率低、缺乏轻量化考虑等局限性,提出了一种融合GRU和CNN的轻量级网络入侵检测模型.首先使用极度随机树删除数据集中的冗余特征;其次使用GRU进行特征提取.考虑到数据中的长短期依赖关系,将所有隐藏层输出作为序列特征信息进行下一步处理;再通过带有逆残差、深度可分离卷积、空洞卷积等结构的轻量化CNN模型进行空间特征提取;为了加速模型收敛加入了通道注意力机制.最后在CIC-IDS2017数据集上的实验表明,该方法具有优秀的检测性能,同时也具有模型参数量少、模型体积小、训练时间短、检测时间短等优点,适用于网络流量的入侵检测工作. 展开更多
关键词 网络入侵检测 门控循环单元 卷积神经网络 轻量级模型 极度随机树
下载PDF
基于轻量级MobileNetV2-DeeplabV3+的棒材分割方法
20
作者 汤维杰 方挺 +1 位作者 韩家明 袁东祥 《重庆工商大学学报(自然科学版)》 2024年第3期66-71,共6页
针对当前语义分割模型为提升像素分割精度,不断增加算法复杂度,导致模型出现参数量大,耗时长,难以部署至工业现场等问题,提出一种基于轻量级MobileNetV2-DeeplabV3+模型的棒材分割算法。算法为平衡像素分割精度、模型参数量和算法检测速... 针对当前语义分割模型为提升像素分割精度,不断增加算法复杂度,导致模型出现参数量大,耗时长,难以部署至工业现场等问题,提出一种基于轻量级MobileNetV2-DeeplabV3+模型的棒材分割算法。算法为平衡像素分割精度、模型参数量和算法检测速度,在原网络基础上做出一系列改进:将原有的Xception主干网络替换为轻量级MobileNetV2网络以降低模型参数量与计算复杂度;在空洞空间金字塔池化(ASPP)模块基础上密集连接各空洞卷积以获得更大的感受野,更加密集的像素采样,并扩大输出特征覆盖的语义信息;使用深度可分离卷积(DSConv)替代ASPP模块中的标准卷积进一步降低模型的计算复杂度;此外,引入有效通道注意力(ECA)模块聚焦目标边缘特征,增强特征图通道信息提取的效果。实验表明:改进后的模型在棒材数据集下平均交并比(MIOU)为89.37%,平均像素精度(MPA)为94.57%,帧率(FPS)为33.09帧/s,模型参数量为33.6 M。与U-net、M-PSPNet、M-DeeplabV3+等模型相比,改进后算法的MIOU值与MPA值略低于最佳值,但仍处于较高水准,模型参数量小,FPS值得到较大提升。实验表明:改进后的算法能较好地平衡分割精度和算法实时性,能满足部署至工业现场的需求。 展开更多
关键词 语义分割 DeepLabv3+模型 轻量级 棒材
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部