Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenome...Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenomenon of FSI due to friction coupling and Poisson coupling being taken into account, is utilized to describe the FSI of fluid-filled pipe system. Terse compatibility equations are educed by the method of characteristics (MOC) to describe the fluid-filled pipe system. To shorten computing time needed to get the solutions under the condition of keeping accuracy requirement, two steps are adopted, firstly the time step Δt and divided number of the straight pipe are optimized, sec-ondly the mesh spacing Δz close to boundary is subdivided in several submeshes automatically ac-cording to the speed gradient of fluid. The mathematical model and arithmetic are validated by com-parisons between simulation solutions of two straight pipe systems and experiment known from lit-erature.展开更多
Simulation investigation on fluid characteristics of the water hydraulic jet pipe servo valve (WHJPSV) is conducted through a commercial computational fluid dynamics (CFD) software package FLUENT. In particular, t...Simulation investigation on fluid characteristics of the water hydraulic jet pipe servo valve (WHJPSV) is conducted through a commercial computational fluid dynamics (CFD) software package FLUENT. In particular, the factors to fluid characteristics of WHJPSV are addressed, which include diameter combination of jet pipe and receiver pipe, jet pipe nozzle clearance, angle between two jet receiver pipes and deflection angle of the jet pipe. It is concluded from the results that: (i) Structural parameters have great influences on fluid characteristics of WHJPSV, when d1 = d2 = 0.3 mm, α= 45 , b = 0.5 mm, and the simulation exhibits better fluid characteristics; (ii) The magnitude of the recovery pressure and flow velocity increase almost linearly with the deflection angle of jet pipe. The research work in this paper is important for determining and optimizing the structural parameters of the jet pipe and jet receiver. The relevant conclusions could be extended to the study of other water hydraulic servo control components.展开更多
The limited availability of studies on the natural convection heat transfer characteristics of fluoride salt has hindered progress in the design of passive residual heat removal systems(PRHRS)for molten salt reactors....The limited availability of studies on the natural convection heat transfer characteristics of fluoride salt has hindered progress in the design of passive residual heat removal systems(PRHRS)for molten salt reactors.This paper presents results from a numerical investigation of natural convection heat transfer characteristics of fluoride salt and heat pipes in the drain tank of a PRHRS.Simulation results are compared with experimental data,demonstrating the accuracy of the calculation methodology.Temperature distribution of fluoride salt and heat transfer characteristics are obtained and analyzed.The radial temperature of liquid fluoride salt in the drain tank shows a uniform distribution,while temperatures increase with increase in axial height from the bottom to the top of the drain tank.In addition,natural convection intensity increases with increase in height of the heat pipes in the tank.Spacing between heat pipes has no obvious effect on the natural convection heat transfer coefficient.This study will contribute to the design of passive heat removal systems for advanced nuclear reactors.展开更多
Coal dust explosion accidents often cause substantial property damage and casualties and frequently involve nano-sized coal dust.In order to study the impact of nano-sized coal on coal dust and methane–coal dust expl...Coal dust explosion accidents often cause substantial property damage and casualties and frequently involve nano-sized coal dust.In order to study the impact of nano-sized coal on coal dust and methane–coal dust explosions,a pipe test apparatus was used to analyze the explosion pressure characteristics of five types of micro-nano particle dusts(800 nm,1200 nm,45μm,60μm,and 75μm)at five concentrations(100 g/m3,250 g/m3,500 g/m3,750 g/m3,and 1000 g/m3).The explosion pressure characteristics were closely related to the coal dust particle size and concentration.The maximum explosion pressure,maximum rate of pressure rise,and deflagration index for nano-sized coal dust were larger than for its micro-sized counterpart,indicating that a nano-sized coal dust explosion is more dangerous.The highest deflagration index Kst for coal dust was 13.97 MPa/(m·s),indicating weak explosibility.When 7%methane was added to the air,the maximum deflagration index Kst for methane–coal dust was 42.62 MPa/(m·s),indicating very strong explosibility.This indicates that adding methane to the coal dust mixture substantially increased the hazard grade.展开更多
This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined d...This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined directly on an aluminum plate(180 mm×120 mm×3 mm) covered by a transparent plate.The working fluid employed is ethanol.As a result,various flow patterns and their transitions are observed and found to be related to the fluid fill ratio,input heat load and the device orientation.Also the operational characteristics and working mechanism are discussed.展开更多
The development of urbanization has led to an increase in the number and scale of construction projects and the types of building construction engineering are getting advance and diverse due to the rapid development o...The development of urbanization has led to an increase in the number and scale of construction projects and the types of building construction engineering are getting advance and diverse due to the rapid development of technology.One of them is the static pressure prestressed pipe pile which is the most commonly used technology in modern building construction work.It is mainly used for pile foundation in construction work,and it has the advantages in less pollution,low noise,and high efficiency compared to the traditional pile foundation.Study on the characteristics of static pressure prestressed pipe pile must be carried out and strengthened the research to increase the effectiveness and quality of static pressure prestressed pipe pile on construction works.This paper is mainly to analyzed the characteristic and construction technology of static pressure prestressed pipe piles on building construction work.展开更多
Due to the material problems and force majeure factors,the leakage will be occurred on the liquid-filled pipe resulting in waste of resources,environmental pollution and even endangering safety.Acoustic wave detection...Due to the material problems and force majeure factors,the leakage will be occurred on the liquid-filled pipe resulting in waste of resources,environmental pollution and even endangering safety.Acoustic wave detection technology is widely used in buried pipeline leak detection,this technology mainly uses the wave(n=0,s=1)in the pipeline acoustic wave to locate the leak.When the leakage acoustic signal propagates along the liquid-filled pipe,the frequency dispersion characteristics can be obtained by wavelet decomposition.And there is a time delay(time difference)value between the leaky acoustic signals collected by the sensors at both ends of the leak.The outputs show that the results obtained by wavelet decomposition are in good agreement with the theoretical calculation results.Based on the obtained dispersion relation,the time delay values at different characteristic frequencies are analyzed by the cross-correlation method,and the leak location accuracy is discussed.This research content provides theoretical support and engineering application guidance for pipe leakage location technology.展开更多
Purpose Copper is a cooling transfer material used in cryogenic superconducting systems.The effective thermal conductivity(ETC)of copper in the 4K region is only about 400 W/(m K).Its heat transfer performance is poor...Purpose Copper is a cooling transfer material used in cryogenic superconducting systems.The effective thermal conductivity(ETC)of copper in the 4K region is only about 400 W/(m K).Its heat transfer performance is poor,there are some shortcomings such as large temperature difference,temperature fluctuation lag,cryogenic system layout limited.The ETC value of helium-based cryogenic oscillating heat pipes(COHP)in the 4K region is much higher than that of copper.However,the choice of heating power interval is very important,and the heating power will affect the oscillation characteristics of COHP.Methods In this study,a helium-based COHP heat transfer performance test platform was built in the 4K region,and the effects of heating power and liquid filling rate on oscillation conditions and ETC were studied.The heating power ranges from 0.1 to 0.5 W,and the liquid filling rate ranges from 20%to 87%.Results and conclusion The heating power interval suitable for oscillation behavior is given quantitatively.The intrinsic correlation between ETC and amplitude is further discussed.The results are of great significance for improving the performance of cryogenic superconducting systems.展开更多
The specific heat capacity of working fluid is an important influence factor on heat transfer characteristic of the pulsating heat pipe(PHP).Due to the relatively large specific heat capacity of micro encapsulated pha...The specific heat capacity of working fluid is an important influence factor on heat transfer characteristic of the pulsating heat pipe(PHP).Due to the relatively large specific heat capacity of micro encapsulated phase change material(MEPCM) suspension,a heat transfer performance experimental facility of the PHP was established.The heat transfer characteristic with MEPCM suspension of different mass concentrations(0.5% and 1.0%) and ultra-pure water were compared experimentally.It was found that when the PHP uses MEPCM suspension as its working fluid,operating stability is impoverished under lower heating power and the operating stability is better under higher heating power.At the inclination angle of 90°,the temperature at heating side decreases compared to ultra-pure water and the temperature at heating side decreases with the raising of MEPCM suspension mass concentration.The heat transfer characteristic of the PHP is positively correlated with the inclination angle and the 90° is optimum.The unfavorable effect of the inclination angle decreases with heating power increasing.When the inclination angle is 90°,the PHP with MEPCM suspension at 1.0% of mass concentration has the lowest thermal transfer resistance and followed by ultra-pure water and MEPCM suspension at 0.5% of mass concentration has the highest thermal transfer resistance.When the inclination angles are 60° and30°,the effect of gravity on the flow direction is reduced to 86.6% and 50% of that on the inclination angle of 90°,respectively,and the promoting effect of gravity on the working fluid is further weakened as the inclination angle further decreases.Due to the high viscosity of MEPCM suspension,the PHP with ultra-pure water has the lowest heat transfer resistance.When the inclination angles is 60°,the thermal resistance with MEPCM suspension at0.5% of the mass concentration is lower than that at 1.0% at the heating power below 230 W.The thermal resistance of MEPCM suspension tends to be similar for heating power of 230-250 W.At the heating power above 270 W,the thermal resistance with MEPCM suspension at 1.0% of the mass concentration is lower than that at 0.5%.展开更多
Based on the differential constitutive relationship of linearviscoelastic material, a solid-liquid coupling vibration equation forviscoelastic pipe conveying fluid is derived by the D'Alembert'sprinciple. The ...Based on the differential constitutive relationship of linearviscoelastic material, a solid-liquid coupling vibration equation forviscoelastic pipe conveying fluid is derived by the D'Alembert'sprinciple. The critical flow velocities and natural frequencies ofthe cantilever pipe conveying fluid with the Kelvin model (flutterinstability) are calculated with the modified finite differencemethod in the form of the recurrence for- mula. The curves betweenthe complex frequencies of the first, second and third mode and flowvelocity of the pipe are plotted. On the basis of the numericalcalculation results, the dynamic behaviors and stability of the pipeare discussed. It should be pointed out that the delay time ofviscoelastic material with the Kelvin model has a remarkable effecton the dynamic characteristics and stability behaviors of thecantilevered pipe conveying fluid, which is a gyroscopicnon-conservative system.展开更多
A test platform is established as per the practical working condition ofelevating platform fire truck. The influences of pipes and load on dynamic characteristics ofload-sensing system are studied by series of step re...A test platform is established as per the practical working condition ofelevating platform fire truck. The influences of pipes and load on dynamic characteristics ofload-sensing system are studied by series of step response experiments. Experimental results showthat the feedback pipe makes the most important influence on the dynamic response speed ofload-sensing system. Its internal diameter should be optimized for given length of pipe. On theother hand, the stability of load-sensing pump is improved as the length of input pipe increases ina certain range. The influence of input pipe on the dynamic response speed is caused mainly by thepressure-wave travel time in the input pipe.展开更多
An approximate method for describing the plastic hardening-softening behaviour of circular pipes subjected to pure bending is presented. Theoretical estimation based on the uniform ovalization model and local collapse...An approximate method for describing the plastic hardening-softening behaviour of circular pipes subjected to pure bending is presented. Theoretical estimation based on the uniform ovalization model and local collapse model proposed in the paper is incorporated to give several simple formulations with reasonable accuracy for determining the relationship between bending moment (M) and curvature (kappa) in the purely bended pipes. Attention is focused on the critical curvature associated with maximum resistant moment and the maximum change in the original diameter before the end of uniform ovalization stage as well as the local collapse behaviour. Some comparisons between analytical results and experimental results are made in order to examine the theory.展开更多
Jet pipe electro-hydraulic servo valve is the heart of feedback control systems,and it is one of the mechatronic components used for precision flow control application.It consists of several precision and ddicate comp...Jet pipe electro-hydraulic servo valve is the heart of feedback control systems,and it is one of the mechatronic components used for precision flow control application.It consists of several precision and ddicate components.The performance of the jet pipe servo valve depends on many parameters.During the developmental stage,it is very difficult to ascertain the function parameters.The steady-state analysis of jet pipe electro-hydraulic servo valve has been made to simulate its fluid characteristics (flowin,flow-out,leakage flow,recovery or load pressure,etc.) by mathematical modeling.Theoretical model was conducted on various affecting parameters on the pressure,the main flow rate of fluid,or leakage flow through the receiver holes.The major parameters studied are jet pipe nozzle diameters,receiver hole diameters,angle between the two centre-lines of receiver hole,nozzle offset,and nozzle stand-of distance.In this paper the research is important to determine and optimize the structural parameters of jet pipe servo valve.Thus,equations of the pressure and flow characteristics are set up and the optimal structural parameters of jet pipe are established.展开更多
Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patte...Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patterns and turbulence were modelled by using the volume of fluid(VOF)model and the Realizable k−εturbulence model respectively.Firstly,validation of the CFD model was carried out and the desirable results were obtained.The different flow patterns and the time-average mean void fraction was coincident with the reported experimental data.Simulations of different cases of slug flow have been carried out to show the effects of superficial gas and liquid velocity on the evolution characteristics of slug flow.Then,a one-way coupled fluid-structure interaction framework was established to investigate the slug flow interaction with a 90°pipe bend under various superficial liquid and gas velocities.It was found that the maximum total deformation and equivalent stress increased with the increasing superficial gas velocity,while decreased with the increasing superficial liquid velocity.In addition,the total deformation and equivalent stress has obvious periodic fluctuation.Furthermore,the distribution position of maximum deformation and stress was related to the evolution of slug flow.With the increasing superficial gas velocity,the maximum total deformation was mainly located at the 90°pipe bend.But as the superficial liquid velocity increases,the maximum total deformation was mainly located in the horizontal pipe section.Consequently,the slug flow with higher superficial gas velocity will induce more serious cyclical impact on the 90°pipe bend.展开更多
An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. Th...An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. The thermal analysis of the flat heat pipe radiator for cooling high-power light emitting diode (LED) array was conducted. The thermal characteristics of the flat heat pipe radiator under the different heat loads and incline angles were investigated experimentally in natural convection. An electro-thermal conversion method was used to measure the junction temperature of the LED chips. It is found that the integral temperature distribution of the flat heat pipe radiator is reasonable and uniform. The total thermal resistance of the flat heat pipe radiator varies in the range of 0.38-0.45 K/W. The junction temperatures of LED chips with the flat heat pipe radiator and with the aluminum board at the same forward current of 0.35 A are 52.5 and 75.2 ℃, respectively.展开更多
This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section (2 × 2 mm^2, 165 mm long) machined directly on an aluminum...This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section (2 × 2 mm^2, 165 mm long) machined directly on an aluminum plate(180×120×3 nm^2), which was covered by a transparent plate. The working fluid employed was ethanol. As the results, the influence parameters of thermal performance were investigated, such as filling ratio, heat load and operational orientations etc. Filling ratio was found to be a critical parameter, and its effect was rather complicated. According to its values the PHP plate could have four distinct working zones with different operational characteristics and heat transfer performance. The effect of heat load on thermal performance was found to be positive, and in general, iucrcasing the heat load would improve heat transfer performance. In order to analyze the effect of gravity on thermal performance, three different heat modes and total seven tilt angles were tested and compared. Successful operation at all orientations with respect to gravity was also achieved.展开更多
文摘Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenomenon of FSI due to friction coupling and Poisson coupling being taken into account, is utilized to describe the FSI of fluid-filled pipe system. Terse compatibility equations are educed by the method of characteristics (MOC) to describe the fluid-filled pipe system. To shorten computing time needed to get the solutions under the condition of keeping accuracy requirement, two steps are adopted, firstly the time step Δt and divided number of the straight pipe are optimized, sec-ondly the mesh spacing Δz close to boundary is subdivided in several submeshes automatically ac-cording to the speed gradient of fluid. The mathematical model and arithmetic are validated by com-parisons between simulation solutions of two straight pipe systems and experiment known from lit-erature.
基金supported by the National Natural Science Foundation of China (Grant Nos.50375056, 50775081, 51075007)the National High-Technology Research and Development Program of China (Grant No.2006AA09Z238)+1 种基金the New Century Excellent Talents in University of State Education Ministry (Grant No.NCET-07-0330)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (Grant No.20090203)
文摘Simulation investigation on fluid characteristics of the water hydraulic jet pipe servo valve (WHJPSV) is conducted through a commercial computational fluid dynamics (CFD) software package FLUENT. In particular, the factors to fluid characteristics of WHJPSV are addressed, which include diameter combination of jet pipe and receiver pipe, jet pipe nozzle clearance, angle between two jet receiver pipes and deflection angle of the jet pipe. It is concluded from the results that: (i) Structural parameters have great influences on fluid characteristics of WHJPSV, when d1 = d2 = 0.3 mm, α= 45 , b = 0.5 mm, and the simulation exhibits better fluid characteristics; (ii) The magnitude of the recovery pressure and flow velocity increase almost linearly with the deflection angle of jet pipe. The research work in this paper is important for determining and optimizing the structural parameters of the jet pipe and jet receiver. The relevant conclusions could be extended to the study of other water hydraulic servo control components.
基金supported by the National Key R&D Program of China(No.2019YFB1901100)the National Natural Science Foundation of China(No.11705138)the China National Postdoctoral Program for Innovative Talents(No.BX201600124)。
文摘The limited availability of studies on the natural convection heat transfer characteristics of fluoride salt has hindered progress in the design of passive residual heat removal systems(PRHRS)for molten salt reactors.This paper presents results from a numerical investigation of natural convection heat transfer characteristics of fluoride salt and heat pipes in the drain tank of a PRHRS.Simulation results are compared with experimental data,demonstrating the accuracy of the calculation methodology.Temperature distribution of fluoride salt and heat transfer characteristics are obtained and analyzed.The radial temperature of liquid fluoride salt in the drain tank shows a uniform distribution,while temperatures increase with increase in axial height from the bottom to the top of the drain tank.In addition,natural convection intensity increases with increase in height of the heat pipes in the tank.Spacing between heat pipes has no obvious effect on the natural convection heat transfer coefficient.This study will contribute to the design of passive heat removal systems for advanced nuclear reactors.
基金This research was supported by the National Key Research and Development Program of China(2016YFC0801800)the National Nature Science Foundation of China(51774291,51864045).
文摘Coal dust explosion accidents often cause substantial property damage and casualties and frequently involve nano-sized coal dust.In order to study the impact of nano-sized coal on coal dust and methane–coal dust explosions,a pipe test apparatus was used to analyze the explosion pressure characteristics of five types of micro-nano particle dusts(800 nm,1200 nm,45μm,60μm,and 75μm)at five concentrations(100 g/m3,250 g/m3,500 g/m3,750 g/m3,and 1000 g/m3).The explosion pressure characteristics were closely related to the coal dust particle size and concentration.The maximum explosion pressure,maximum rate of pressure rise,and deflagration index for nano-sized coal dust were larger than for its micro-sized counterpart,indicating that a nano-sized coal dust explosion is more dangerous.The highest deflagration index Kst for coal dust was 13.97 MPa/(m·s),indicating weak explosibility.When 7%methane was added to the air,the maximum deflagration index Kst for methane–coal dust was 42.62 MPa/(m·s),indicating very strong explosibility.This indicates that adding methane to the coal dust mixture substantially increased the hazard grade.
基金the Ger man National Science Foundation (GR-412/33-2)Shanghai Leading Academic Discipline Project (No.B604)
文摘This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined directly on an aluminum plate(180 mm×120 mm×3 mm) covered by a transparent plate.The working fluid employed is ethanol.As a result,various flow patterns and their transitions are observed and found to be related to the fluid fill ratio,input heat load and the device orientation.Also the operational characteristics and working mechanism are discussed.
文摘The development of urbanization has led to an increase in the number and scale of construction projects and the types of building construction engineering are getting advance and diverse due to the rapid development of technology.One of them is the static pressure prestressed pipe pile which is the most commonly used technology in modern building construction work.It is mainly used for pile foundation in construction work,and it has the advantages in less pollution,low noise,and high efficiency compared to the traditional pile foundation.Study on the characteristics of static pressure prestressed pipe pile must be carried out and strengthened the research to increase the effectiveness and quality of static pressure prestressed pipe pile on construction works.This paper is mainly to analyzed the characteristic and construction technology of static pressure prestressed pipe piles on building construction work.
基金The authors gratefully acknowledge the support of the National Nature Science Foundation of China(No.11774378)。
文摘Due to the material problems and force majeure factors,the leakage will be occurred on the liquid-filled pipe resulting in waste of resources,environmental pollution and even endangering safety.Acoustic wave detection technology is widely used in buried pipeline leak detection,this technology mainly uses the wave(n=0,s=1)in the pipeline acoustic wave to locate the leak.When the leakage acoustic signal propagates along the liquid-filled pipe,the frequency dispersion characteristics can be obtained by wavelet decomposition.And there is a time delay(time difference)value between the leaky acoustic signals collected by the sensors at both ends of the leak.The outputs show that the results obtained by wavelet decomposition are in good agreement with the theoretical calculation results.Based on the obtained dispersion relation,the time delay values at different characteristic frequencies are analyzed by the cross-correlation method,and the leak location accuracy is discussed.This research content provides theoretical support and engineering application guidance for pipe leakage location technology.
基金supported in part by National Natural Science Foundation of China(No.11905233).
文摘Purpose Copper is a cooling transfer material used in cryogenic superconducting systems.The effective thermal conductivity(ETC)of copper in the 4K region is only about 400 W/(m K).Its heat transfer performance is poor,there are some shortcomings such as large temperature difference,temperature fluctuation lag,cryogenic system layout limited.The ETC value of helium-based cryogenic oscillating heat pipes(COHP)in the 4K region is much higher than that of copper.However,the choice of heating power interval is very important,and the heating power will affect the oscillation characteristics of COHP.Methods In this study,a helium-based COHP heat transfer performance test platform was built in the 4K region,and the effects of heating power and liquid filling rate on oscillation conditions and ETC were studied.The heating power ranges from 0.1 to 0.5 W,and the liquid filling rate ranges from 20%to 87%.Results and conclusion The heating power interval suitable for oscillation behavior is given quantitatively.The intrinsic correlation between ETC and amplitude is further discussed.The results are of great significance for improving the performance of cryogenic superconducting systems.
基金financially supported by National Natural Science Foundation of China (Grant No.52000008)supported by R&D Program of Beijing Municipal Education Commission(Grant No.KM202310016008)+1 种基金Beijing Natural Science Foundation (Grant No.3192042)the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture (Grant No.X20058)。
文摘The specific heat capacity of working fluid is an important influence factor on heat transfer characteristic of the pulsating heat pipe(PHP).Due to the relatively large specific heat capacity of micro encapsulated phase change material(MEPCM) suspension,a heat transfer performance experimental facility of the PHP was established.The heat transfer characteristic with MEPCM suspension of different mass concentrations(0.5% and 1.0%) and ultra-pure water were compared experimentally.It was found that when the PHP uses MEPCM suspension as its working fluid,operating stability is impoverished under lower heating power and the operating stability is better under higher heating power.At the inclination angle of 90°,the temperature at heating side decreases compared to ultra-pure water and the temperature at heating side decreases with the raising of MEPCM suspension mass concentration.The heat transfer characteristic of the PHP is positively correlated with the inclination angle and the 90° is optimum.The unfavorable effect of the inclination angle decreases with heating power increasing.When the inclination angle is 90°,the PHP with MEPCM suspension at 1.0% of mass concentration has the lowest thermal transfer resistance and followed by ultra-pure water and MEPCM suspension at 0.5% of mass concentration has the highest thermal transfer resistance.When the inclination angles are 60° and30°,the effect of gravity on the flow direction is reduced to 86.6% and 50% of that on the inclination angle of 90°,respectively,and the promoting effect of gravity on the working fluid is further weakened as the inclination angle further decreases.Due to the high viscosity of MEPCM suspension,the PHP with ultra-pure water has the lowest heat transfer resistance.When the inclination angles is 60°,the thermal resistance with MEPCM suspension at0.5% of the mass concentration is lower than that at 1.0% at the heating power below 230 W.The thermal resistance of MEPCM suspension tends to be similar for heating power of 230-250 W.At the heating power above 270 W,the thermal resistance with MEPCM suspension at 1.0% of the mass concentration is lower than that at 0.5%.
文摘Based on the differential constitutive relationship of linearviscoelastic material, a solid-liquid coupling vibration equation forviscoelastic pipe conveying fluid is derived by the D'Alembert'sprinciple. The critical flow velocities and natural frequencies ofthe cantilever pipe conveying fluid with the Kelvin model (flutterinstability) are calculated with the modified finite differencemethod in the form of the recurrence for- mula. The curves betweenthe complex frequencies of the first, second and third mode and flowvelocity of the pipe are plotted. On the basis of the numericalcalculation results, the dynamic behaviors and stability of the pipeare discussed. It should be pointed out that the delay time ofviscoelastic material with the Kelvin model has a remarkable effecton the dynamic characteristics and stability behaviors of thecantilevered pipe conveying fluid, which is a gyroscopicnon-conservative system.
基金This project is supported by National Natural Science Foundation of China(No.59875076).
文摘A test platform is established as per the practical working condition ofelevating platform fire truck. The influences of pipes and load on dynamic characteristics ofload-sensing system are studied by series of step response experiments. Experimental results showthat the feedback pipe makes the most important influence on the dynamic response speed ofload-sensing system. Its internal diameter should be optimized for given length of pipe. On theother hand, the stability of load-sensing pump is improved as the length of input pipe increases ina certain range. The influence of input pipe on the dynamic response speed is caused mainly by thepressure-wave travel time in the input pipe.
文摘An approximate method for describing the plastic hardening-softening behaviour of circular pipes subjected to pure bending is presented. Theoretical estimation based on the uniform ovalization model and local collapse model proposed in the paper is incorporated to give several simple formulations with reasonable accuracy for determining the relationship between bending moment (M) and curvature (kappa) in the purely bended pipes. Attention is focused on the critical curvature associated with maximum resistant moment and the maximum change in the original diameter before the end of uniform ovalization stage as well as the local collapse behaviour. Some comparisons between analytical results and experimental results are made in order to examine the theory.
基金National Science and Technology Supporting Program,China(No.2011BAJ02B06)Aeronautical Science Foundation of China(No.20090738003)National Natural Science Foundations of China(No.51175378,No.50775161)
文摘Jet pipe electro-hydraulic servo valve is the heart of feedback control systems,and it is one of the mechatronic components used for precision flow control application.It consists of several precision and ddicate components.The performance of the jet pipe servo valve depends on many parameters.During the developmental stage,it is very difficult to ascertain the function parameters.The steady-state analysis of jet pipe electro-hydraulic servo valve has been made to simulate its fluid characteristics (flowin,flow-out,leakage flow,recovery or load pressure,etc.) by mathematical modeling.Theoretical model was conducted on various affecting parameters on the pressure,the main flow rate of fluid,or leakage flow through the receiver holes.The major parameters studied are jet pipe nozzle diameters,receiver hole diameters,angle between the two centre-lines of receiver hole,nozzle offset,and nozzle stand-of distance.In this paper the research is important to determine and optimize the structural parameters of jet pipe servo valve.Thus,equations of the pressure and flow characteristics are set up and the optimal structural parameters of jet pipe are established.
基金sponsored by the National Natural Science Foundation of China(Grant No.51779143)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(Grant No.SL2020ZD101)the Cultivation of Scientific Research Ability of Young Talents of Shanghai Jiao Tong University(Grant No.19X100040072).
文摘Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patterns and turbulence were modelled by using the volume of fluid(VOF)model and the Realizable k−εturbulence model respectively.Firstly,validation of the CFD model was carried out and the desirable results were obtained.The different flow patterns and the time-average mean void fraction was coincident with the reported experimental data.Simulations of different cases of slug flow have been carried out to show the effects of superficial gas and liquid velocity on the evolution characteristics of slug flow.Then,a one-way coupled fluid-structure interaction framework was established to investigate the slug flow interaction with a 90°pipe bend under various superficial liquid and gas velocities.It was found that the maximum total deformation and equivalent stress increased with the increasing superficial gas velocity,while decreased with the increasing superficial liquid velocity.In addition,the total deformation and equivalent stress has obvious periodic fluctuation.Furthermore,the distribution position of maximum deformation and stress was related to the evolution of slug flow.With the increasing superficial gas velocity,the maximum total deformation was mainly located at the 90°pipe bend.But as the superficial liquid velocity increases,the maximum total deformation was mainly located in the horizontal pipe section.Consequently,the slug flow with higher superficial gas velocity will induce more serious cyclical impact on the 90°pipe bend.
基金Project(50876016) support by the National Natural Science Foundation of China
文摘An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. The thermal analysis of the flat heat pipe radiator for cooling high-power light emitting diode (LED) array was conducted. The thermal characteristics of the flat heat pipe radiator under the different heat loads and incline angles were investigated experimentally in natural convection. An electro-thermal conversion method was used to measure the junction temperature of the LED chips. It is found that the integral temperature distribution of the flat heat pipe radiator is reasonable and uniform. The total thermal resistance of the flat heat pipe radiator varies in the range of 0.38-0.45 K/W. The junction temperatures of LED chips with the flat heat pipe radiator and with the aluminum board at the same forward current of 0.35 A are 52.5 and 75.2 ℃, respectively.
基金Supported by the Ger man National Science Foundation (DFG)(No. GR412/33)
文摘This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section (2 × 2 mm^2, 165 mm long) machined directly on an aluminum plate(180×120×3 nm^2), which was covered by a transparent plate. The working fluid employed was ethanol. As the results, the influence parameters of thermal performance were investigated, such as filling ratio, heat load and operational orientations etc. Filling ratio was found to be a critical parameter, and its effect was rather complicated. According to its values the PHP plate could have four distinct working zones with different operational characteristics and heat transfer performance. The effect of heat load on thermal performance was found to be positive, and in general, iucrcasing the heat load would improve heat transfer performance. In order to analyze the effect of gravity on thermal performance, three different heat modes and total seven tilt angles were tested and compared. Successful operation at all orientations with respect to gravity was also achieved.